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Abstract 

This report presents the second of two deliverables related to WP 4 ‘Probabilistic assessment of 
interior insulation solutions’. The prime objective of WP4 is the development of an efficient 
strategy for the probabilistic hygrothermal assessment of interior insulation solutions. This 
deliverable reports the findings from the specific activities on model-order reduction in 
hygrothermal simulations in Task 4.2 (Section 2) and on neural-network-based metamodelling in 
Task 4.4 (Section 3). 
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1 Executive Summary 

This report presents the second of two deliverables related to RIBuild’s WP 4 ‘Probabilistic 

assessment of interior insulation solutions’.  The key objective of WP4 is the development of an 
efficient strategy for the probabilistic hygrothermal assessment of interior insulation solutions.  That 
strategy involves Monte-Carlo-based repetitions of hygrothermal simulations, and hence requires an 
efficient deterministic hygrothermal simulator and an efficient probabilistic assessment approach.  
Prior to the initiation of the RIBuild project, both a deterministic simulator and a probabilistic metho-
dology were already available.  Their joint application to interior insulation solutions does however 
require further developments, primarily in relation to their numerical efficiency.   

The various tasks in WP4 hence focus on efficiency improvements of both the deterministic simulator 
and the probabilistic methodology.  Tasks 4.1 and 4.2 target the efficient one-, two- and three-dimen-
sional simulation of heat, air and moisture transfer in building components, Tasks 4.3 and 4.4 aim for 
the efficient probabilistic assessment of hygrothermal performances based on these simulations.  In 
the final Task 4.5, the developments of Tasks 4.1 to 4.4 are to be brought together in a final application 
example.  The first deliverable reported on the general developments in WP4 and on the specific 
results from Task 4.1 and Task 4.3.  This deliverable reports the findings from the specific activities 
on model-order reduction in hygrothermal simulations in Task 4.2 (Section 2) and on neural-network-
based metamodelling in Task 4.4 (Section 3).  

Section 2 details the investigation on the performance of two model order reduction methods, Proper 
Orthogonal Decomposition (POD) and Proper Generalised Decomposition (PGD), with linear and 
nonlinear calculation objects.  It is demonstrated there that the PGD method does not perform well, 
and the method did hence not get further consideration.  The POD method, contrarily, reveals to 
perform very well for the linear thermal case, as only a limited number of construction modes and a 
small amount of snapshots are required to obtain accurate results.  This method furthermore does well 
when extrapolated to different problems and when applied in a probabilistic simulation study.  For 
the nonlinear hygrothermal case, the accuracy and performance of POD appears to strongly depend 
on the degree of nonlinearity of the calculation object.  Relative to the linear cases, (much) more 
construction modes and snapshots are required in order to obtain an accurate result.  Since the 
inefficiency of POD for nonlinear simulations arises from the high computational cost of repeatedly 
evaluating the nonlinear terms, the Discrete Empirical Interpolation Method (DEIM) is studied to 
further decrease the computational cost of the hygrothermal simulation. This approach again brings 
a significant reduction of the computational complexity. 

Section 3 describes the examination of the performance of neural networks for metamodeling of 
hygrothermal behaviour.  To that aim, a convolutional neural network (CNN) is trained to predict the 
behaviour of a 1D masonry wall, taking into account all probabilistic input parameters.  The network 
is trained to predict hygrothermal time series (temperature, relative humidity and saturation degree), 
which are subsequently used to predict damage using existing damage prediction models (moist 
freeze-thaw cycles, mould growth, wood decay).  The results show that the CNN is able to predict 
the hygrothermal outputs accurately.  The damage predictions, based on the hygrothermal predictions 
by the network, are accurate in most cases as well.  However, in some cases, the mould index and 
wood mass loss at the wooden beam ends are underestimated, and the indicators for frost damage 
score low, due to relatively high errors.  But, although the performance indicators score less well, 
these deviations are unlikely to influence decision making significantly.  
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2 Introduction 

This report presents the second of two deliverables related to RIBuild’s WP 4 ‘Probabilistic 

assessment of interior insulation solutions’.  The key objective of WP4 is the development of an 
efficient strategy for the probabilistic hygrothermal assessment of interior insulation solutions.  The 
latter must proceed via numerical simulations, since a multitude of scenarios need to be judged 
quickly and cheaply.  The overall strategy involves Monte-Carlo-based repetitions of hygrothermal 
simulations, and an efficient strategy hence requires an efficient deterministic hygrothermal simulator 
and an efficient probabilistic assessment methodology. 

Prior to the initiation of the RIBuild project, both a deterministic simulator and a probabilistic metho-
dology were already available, from previous research activities by respectively the Institute of Buil-
ding Climatology of TU Dresden and the Building Physics Section of KU Leuven. Their joint appli-
cation to interior insulation solutions did however require further developments, primarily in relation 
to their numerical efficiency.  At that point in time indeed, the computational costs of such assessment 
of interior insulation solutions would highly exceed the time constraints of the RIBuild project.   

The various tasks in WP4 hence focus on efficiency improvements of both the deterministic simulator 
and the probabilistic methodology.  Tasks 4.1 and 4.2 target the efficient one-, two- and three-dimen-
sional simulation of heat, air and moisture transfer in building components, Tasks 4.3 and 4.4 aim for 
the efficient probabilistic assessment of hygrothermal performances based on these simulations.  In 
the final Task 4.5, the developments of Tasks 4.1 to 4.4 are to be brought together in a final application 
example. 

The original overall set-up of WP4 can be summarized as follows: 
     Tasks  participants 

 T4.1: an efficient 3D HAM simulation model  TUD 
 T4.2: decomposition techniques in HAM simulation  KUL 
 T4.3: sequential sampling for Monte Carlo analysis  KUL 
 T4.4: surrogate models for HAM simulation  KUL 
 T4.5: exemplary application illustration  KUL/TUD/AAU/HES-SO 

    Deliverables 

 D4.1: basic probabilistic analysis (T4.1, T4.3)  KUL/TUD 
 D4.2: metamodelling approaches (T4.2, T4.4)  KUL 

The original objectives and methodology for the different WP4 tasks are formulated as follows:  
 Task 4.1: Numerical efficiency of hygrothermal simulation 

Hygrothermal simulations with Delphin take on a double role in WP4: they may be applied 
directly in the probabilistic methodology for simple configurations, while they may be applied 
indirectly as a reference for the reduced-order and/or surrogate modelling for more complex 
configurations. 
The currently available Delphin 5.8 allows one- and two-dimensional hygrothermal simulati-
ons making use of direct solvers for banded systems, with sufficient functionality and effici-
ency for simple configurations.  The more complex configurations require three-dimensional 
functionalities and iterative solvers with preconditioning.   

 Task 4.2: Reduced-order models in hygrothermal simulation 
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Notwithstanding the potential efficiency gains targeted in Task 4.1, direct numerical simula-
tion of heat, air and moisture transfer in building components will remain (relatively) compu-
tationally expensive, and alternatives need to be investigated.  Task 4.2 aims for ‘model order 
reduction’ methods in that respect.   
The literature offers multiple references on the successful application of model order reduc-
tion methods for hygrothermal simulation, but most of these applications remain restricted to 
cases where linear heat and vapour transfer are the dominant mechanisms.  Its applicability 
for the far more strongly non-linear liquid transfer – a dominant moisture transfer mechanism 
in most hygrothermal assessments of the internal insulation solutions – remains unknown, and 
that will form the prime research target of this task. 

 Task 4.3: Sequential sampling in probabilistic assessment 

A sequential sampling strategy, merging replicated optimised Latin hypercubes and bootstrap-
based error quantification, is presently the state-of-the-art concerning convergence efficiency 
and monitoring and forms the backbone of the probabilistic strategy. As currently independent 
optimal Latin hypercubes are combined, the rate of convergence is proportional to n-0.5 with n 
the number of Monte Carlo samples.  Theoretically though, quasi-Monte Carlo sampling sche-
mes allow (far) higher convergence rates. 
To that aim, the replicated Latin hypercubes and bootstrap-based errors are to be abandoned 
in favour of low-discrepancy-based approaches combined with replication-based standard er-
rors.  In this task, different possible candidates for the actual low-discrepancy-based sampling 
schemes will be evaluated and compared, and their combinability with replication-based error 
quantification will equally be assessed. 

 Task 4.4: Surrogate modelling of hygrothermal performance 

Static metamodels are at present a crucial element of the probabilistic methodology, in order 
to reduce the computational cost of the multi-level Monte Carlo sampling scheme.  This sur-
rogate modelling has however been limited to static models: the models consider stationary 
outcomes only, and relate these directly to the variable input parameters.  Their static character 
does however restrict their applicability. 
Dynamic surrogate models will greatly augment the potential of metamodels: explicit inclu-
sion of the temporal variations of the hygrothermal conditions in the surrogate models makes 
them far more flexible.  To this aim, recurrent neural networks are the first option to be exa-
mined. Alternatively approaches based on singular value decomposition or principal compo-
nent analysis can be considered.  Complementarily, the reduced-order models resulting from 
Task 4.2 may offer additional possibilities. 

 Task 4.5 Exemplary application on internal insulation case  

WP6 targets a comprehensive comparative assessment of internal insulation solutions based 
on life cycle cost, combining the probabilistic assessment of hygrothermal performance deve-
loped in WP4 with the quantification of life cycle costs of internal insulation’s benefits and 
damages formulated in WP5. To support the application of the WP4 techniques in such holis-
tic evaluation, an illustrative application forms the concluding element of this work package. 
In this illustration, a number of internal insulation solutions for external walls with embedded 
wooden beams, openings in the building envelope such as windows and doors etc., are eva-
luated via the developed probabilistic hygrothermal assessment strategy. 
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This deliverable reports on the outcomes from the research activities within Task 4.2 (Section 2) and 
Task 4.4 (Section 3). Section 2 reports on the investigation of model-order-reduction methods for 
applications in hygrothermal performance assessment, particularly the Proper Orthogonal 
decomposition and the Proper Generalised Decomposition.  Section 3 describes the examination of 
neural networks for the emulation of numerical hygrothermal simulation, with a focus on predicting 
the temporal evolution of temperatures, moisture contents in (insulated) masonry walls. 
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3 Model-order-reduction for hygrothermal simulations 

3.1 General Information 

The research on model-order reduction for hygrothermal simulations was carried out by Tianfeng 
Hou, who started in October 2015 as a Ph.D student at KU Leuven. This research was developed 
mainly during the period from July 2017 to June 2019, on which roughly 22 person-months were 
spent. In this section, a brief overview of the progress of his work is provided. First, a detailed 
literature review about the two model order reduction methods – proper orthogonal decomposition 
(POD) and proper generalized decomposition (PGD) – is conducted. Next, to obtain a deeper 
understanding of the fundamental properties and practical applications of POD and PGD, the two 
model order reduction techniques and the Finite Element Method (FEM) are implemented for 
simulating the linear heat transfer in a massive masonry wall, and several deterministic linear case 
studies about investigating the accuracies of the two reduced models and the robustness of using POD 
for simulating different problems are performed. At the end of this interval, a paper about different 
model order reduction methods for the simulation of wall heat transfer was presented in the 7th 
international building physics conference (IBPC 2018). Next, to study the performance of POD and 
PGD for Monte Carlo based probabilistic analysis, a probabilistic case study on quantifying the 
distribution of the heat losses via the massive masonry wall is performed. Similar as for the linear 
HAM simulation, for investigating the use of POD and FEM for simulating (strongly) nonlinear 
hygrothermal performance, both methods are implemented in a computer code. In addition, several 
benchmark case studies (HAMSTAD benchmark 2, 3 and 4) are performed to analyse the accuracy 
and robustness of using POD for simulating different problems. At the end of this interval, a paper 
about using POD for the simulation of (strong) nonlinear hygrothermal performance has been 
submitted and accepted by the Central European Symposium on Building Physics in 2019. At last, to 
further reduce the computational time, the combination of POD with discrete empirical interpolation 
method (DEIM) is being investigated. 

3.2 Introduction 

Today, 30% of the European building stock consists of ‘historic’ buildings built prior to World War 
II (Ribuild.eu, 2018). These buildings are typically far less energy-efficient than new buildings, and 
they hence account for a large share of the total energy consumption of buildings. One important 
measure to reduce their energy consumption is to install internal insulation. However, internal 
insulation is often associated with moisture damage, and much care should be taken when applying 
this solution. This report is part of the EU H2020 RIBuild project, which aims at developing effective 
and comprehensive guidelines for internal insulation in historic buildings. Given that a multitude of 
scenarios and factors can be easily evaluated with numerical analyses, the use of numerical 
simulations for hygrothermal performance assessment tends to be the best option. However, the 
conventional numerical methods based on the space and time discretization can be very time 
consuming due to the high non-linearity of the equations, the complex multi-dimensional spatial 
domains and the long-time intervals required. Therefore, a faster surrogate model is highly desired. 

Instead of using the standard numerical models, Van Gelder et al. (2014) employed statistical 
regression and interpolation based surrogate models (such as polynomial regression, Kriging etc.) to 
reduce the simulation time. However, these simpler surrogate models can only deliver static results: 
for heat and moisture transfer through a building component, they may predict the yearly total heat 
loss or yearly average moisture content, but not the evolution of temperature or moisture content 

http://ribuild.eu/about
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profiles over time.  Therefore, to obtain the dynamic behaviour with a simplifying surrogate model, 
model order reduction techniques as alternatives of the statistical surrogate modelling are 
investigated. 

In this report, two model order reduction methods – proper orthogonal decomposition (POD) and 
proper generalized decomposition (PGD)) – are investigated and compared. The first method belongs 
to a family of a posteriori methods, as it is built based on the earlier results of the original time-
consuming model. The second method, on the other hand, is an a priori method which can be 
established by a suitable iterative process. Instead of the standard finite element method (FEM), both 
POD and PGD are used to simulate the building hygrothermal performance, exemplified through both 
linear and nonlinear case studies. 

Below, the introduction of POD and PGD are put forward, with focus on the potential use for 
modelling of wall heat and moisture transfer. Next, the results of using POD and PGD for simulating 
the wall performances are respectively presented by both linear and nonlinear scenarios, and 
discussions with respect to the interpretation of their accuracies follow. Finally, a conclusion on 
synthesizing the superiorities and current limitations of model order reduction methods are put 
forward. 

 
Nomenclature  

 
𝜌 Density of the wall [𝑘𝑔/𝑚³] 
𝑐 Specific heat capacity [𝐽/𝑘𝑔𝐾] 
𝜆 Thermal conductivity [𝑊/𝑚𝐾] 
𝑢 Temperature [°𝐶] 
𝑡 Temporal variable [𝑠] 
𝑥 Spatial variable [𝑚] 
𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟  Exterior temperature [°𝐶] 
𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟  Interior temperature [°𝐶] 

ℎ𝑒 Exterior surface transfer coefficient 
[W/m²K] 
ℎ𝑖 Interior surface transfer coefficient 
[W/m²K] 
𝐿 Wall thickness [𝑚] 
POD Proper orthogonal decomposition 
PGD Proper generalized decomposition 
FEM Finite element method 
 

3.3 POD and PGD for modelling wall hygrothermal performance  

The hygrothermal performance of a building component can be assessed by analysing the transfer of 
heat and moisture through building materials, and it requires to get numerical simulation results for 
the coupled heat and moisture transport equation combined with information on the component 
geometry, its material properties and its boundary conditions. The conventional hygrothermal 
simulation models are typically based on numerical simulation methods applying a space and a time 
discretization, for instance, the FEM. As mentioned before, these standard numerical methods can be 
very time consuming, due to the high number of unknowns after spatial and temporal discretization 
and non-linearities also complicate the matter because of the need for small time steps and/or 
iterations. Therefore, in this report two model order reduction methods (POD and PGD) were 
investigated which reduce the degrees of freedom of the complex system while still mimic the 
dynamic behaviour (such as the time evolution of temperatures, moisture content…). 

3.3.1 Proper orthogonal decomposition 

The POD method was first proposed by Kosambi (1943), and has been successfully applied in a 
variety of engineering fields, such as image processing, signal analysis, data compression and recently 
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in building physical engineering (Tallet et al., 2015; Tallet et al., 2017; Berger et al., 2018). POD is 
also known as Karhunen - Loeve decomposition, principal component analysis, or singular value 
decomposition, and the connections of these three methods are provided by Liang et al. (2002). A 
brief tutorial of POD can be found in (Chatterjee, 2000), while a detailed introduction of its theory 
and related application for modelling heat transfer process are respectively presented by Liang et al. 
(2002) and Fic et al. (2005). 

The key idea of POD is approximating a high-dimensional process by its ‘most relevant information’. 
In this report, the ‘most relevant information’ is extracted from earlier simulation results of the 
original numerical model with singular value decomposition (SVD). After the SVD, the needed POD 
modes are constructed by selecting the 𝑘 most important basis vectors, here 𝑘 ≪ 𝑁, where 𝑁 is the 
number of the spatial mesh elements. As a result, these POD modes can be used to construct a reduced 
model for simulating similar problems (with, for instance, variations in the boundary conditions, in 
the material properties or in the component geometry, or with a longer simulation period). The reader 
is referred to (Agudelo, 2009) for a detailed procedure of using POD to construct the reduced-order-
model. 

3.3.2 Proper generalized decomposition 

Despite being able to provide a reduced basis and save the computational time when simulating 
similar problems, the POD method has an important drawback: to construct a POD, ‘a priori 
knowledge’ – the earlier simulation results of the large original model, commonly denoted as 
snapshots – is needed. This disadvantage in turn gives an extra computational cost and limits its 
application to ‘different but similar problems’. On the contrary, Ladeveze (1985) proposed a different 
strategy, called ‘radial approximation’. This method is based on the hypothesis that the solution of 
the considered problem is given by a finite sum representation: 

𝑢(𝒙, 𝑡) =  ∑ 𝑿𝑖(𝑥) ∙ 𝑇𝑖(𝑡)

𝑁

𝑖=1

 
(1) 

Here, 𝑢 is the solution of the target problem, 𝑿𝑖 usually stands for the spatial coordinates, 𝑇𝑖 represent 
the temporal parameter. Next, injecting equation (1) to the weighted residual formulation of the 
coupled heat and moisture transport equation and starting from an initial point based on the related 
initial and boundary conditions, the solution 𝑢(𝒙, 𝑡) can be constructed by successive iterative 
enrichment methods. The procedure is stopped when the convergence criteria are reached. As a result, 
this strategy allows to approximate the solution without any ‘a priori knowledge’. Inspired by this 
strategy, Ammar et al. (2006) generalized this method to the multidimensional situation and named 
it proper generalized decomposition (PGD). A detailed tutorial of PGD is proposed by Chinesta et al. 
(2013), and an application of PGD for simulating thermal processes is provided by Pruliere et al. 
(2013). In addition, two reviews of PGD are provided by Chinesta et al. (2010) and Berger et al. 
(2016), with attention for general and building physical engineering applications respectively. 

3.4 Linear scenarios  

For investigating the performance of POD and PGD for hygrothermal simulations, we start from the 
simplest scenarios, where both of the material properties and boundary conditions are linear. As the 
reference situation prior to retrofit is often a massive masonry wall, and that configuration is adopted 
here as calculation object. To judge the feasibility of internal insulation in historic buildings, the 
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hygrothermal performances of internally insulated massive walls – heat loss, mould growth, wood rot 
need to be investigated (Vereecken et al. 2015). To simplify the calculation complexity in this section, 
the performance assessment is limited to the heat losses through the wall. Since quantifying the heat 
loss requires solution of the temperature profiles of the wall, both the temperature profiles and heat 
losses over the entire year need to be quantified. To do so, the thermal behaviour of the wall is 
simulated with FEM, POD and PGD, wherein the conductive heat transfer equation 

𝜌𝑐
𝜕𝑢

𝜕𝑡
− 𝜆

𝜕2𝑢

𝜕𝑥2
= 0 

(2) 

is solved for simple interior and exterior boundary conditions: 

𝜆
𝜕𝑢

𝜕𝑥
= ℎ𝑒(𝑢(0) − 𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟) (3) 

−𝜆
𝜕𝑢

𝜕𝑥
= ℎ𝑖(𝑢(𝐿) − 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟) (4) 

3.4.1 Deterministic case study 

In this section, a deterministic case study is performed to evaluate the accuracies of POD and PGD. 
To do so, the conductive heat transfer equation (2) is simulated respectively by the FEM and different 
model order reduction methods, under specific boundary conditions, material properties and 
component geometry, with a simulation period of one year. The simulation result of the FEM is taken 
as the reference solution: more specifically, this reference solution is calculated by the FEM with 200 
mesh elements and a fixed time step of one hour. As mentioned in section 3.3, the reduced model 
obtained by POD is usually used for simulating problems with different boundary conditions, material 
properties, component geometry, and/or for a longer simulation period. On the other hand, being an 
a posteriori method, PGD can directly provide approximate solutions of the calculation object without 
any ‘a priori knowledge’. In this section, the accuracies of PGD and full POD is judged, the term ‘full 
POD’ here referring to the POD basis that is trained on snapshots of the whole simulation period. The 
methods are then used for simulating problems with the same boundary conditions, material 
properties and component geometry. In the second part, the accuracy of using POD for simulating 
problems that deviate from the training snapshot simulation is illustrated. 

3.4.1.1 Input parameters 

For the comparison case study of PGD and full POD, the detailed information of the input parameters 
is mentioned here. For the material properties, the density 𝜌, thermal capacity 𝑐 and conductivity 𝜆 
of the wall are 2100 𝑘𝑔/𝑚³, 870 𝐽/𝑘𝑔𝐾 and 1 𝑊/𝑚𝐾. The boundary conditions are kept restricted 
to combined convection and radiation, governed by the air temperature. The outdoor air temperature 
𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 is taken from climate data for Gaasbeek (Belgium), the indoor air temperature 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is 
kept at 20 ℃. The interior and exterior surface heat transfer coefficients are ℎ𝑖 = 8 W/m²K and ℎ𝑒 =
25 W/m²K. In relation to the component geometry, the thickness of the wall 𝐿 is 0.2 𝑚. 

With respect to the use of POD for simulating problems with a longer simulation period, several POD 
models are constructed by using the same input values mentioned above, but with snapshots from 
shorter time intervals: one month, one day, half day, six hours, three hours. All the training scenarios 
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are performed 12 times: once for every month, where the one day, half day, six hours, three hours are 
always taken at the start of the month. 

On the other hand, in order to investigate the performance of POD for simulating problems different 
in boundary conditions, material properties and/or component geometry, 6 scenarios are considered. 
In the first 5 scenarios, one element of the input parameters is modified relative to the previous case 
study, a detailed summary of which is summarized in Table 1. For the 6th scenario, all changes of the 
first 5 scenarios are imposed simultaneously.  It should be mentioned that, all the POD models in 
these 6 scenarios are constructed by a matrix of snapshots of one single day (the first day of each 
month). 

Table 1: Training properties and testing properties of the 6 scenarios 

Scenario Element modified Training properties Testing properties 

1 Material properties 𝜌: 2100 𝑘𝑔/𝑚³ & 𝜆: 1 𝑊/𝑚𝐾  𝜌: 1700 𝑘𝑔/𝑚³ & 𝜆: 0.6 𝑊/𝑚𝐾  

2 Transfer coefficients ℎ𝑖: 6 W/m²K  & ℎ𝑒: 10W/m²K   ℎ𝑖: 10 W/m²K  & ℎ𝑒: 40W/m²K   

2 Wall thickness 𝐿: 0.2𝑚 𝐿: 0.5𝑚 

4 Interior temperature 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟: 15℃ 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟: 25℃ 

5 Exterior temperature 𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟: 𝑅𝑜𝑚𝑎 (𝐼𝑡𝑎𝑙𝑦) 𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟: 𝐴𝑟𝑗𝑒𝑝𝑙𝑜𝑔 (𝑆𝑤𝑒𝑑𝑒𝑛) 

3.4.1.2 Result of the comparison of PGD and full POD 

In this section, the accuracies of PGD and full POD are judged. To evaluate the performance of POD 
and PGD as a function of the number of modes, both of the POD and PGD models are calculated with 
1 to 15 modes. To compare the accuracy of PGD and full POD, the average temperature difference 
(equation (5)) between the FEM solution and the solutions of the two reduced models, as a function 
of the number of modes, is shown in Figure 1. For getting a more direct view of the performance of 
full POD and PGD methods, different profiles of temperature simulated by FEM, POD and PGD are 
compared at different moments, and the result is presented in Figure 2. In addition, since in practice 
the cumulated heat loss of entire year is usually considered as an indicator of the thermal performance 
of the wall, the relative deviation of heat losses between the reference solution and different reduced 
models (equation (6)) are shown in Figure 3. 

∑ |𝑢𝐹𝐸𝑀(𝑖, 𝑗) − 𝑢𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑖, 𝑗)|1≤ 𝑖 ≤ 𝑁𝑥
1<𝑗<𝑁𝑡 

𝑁𝑥 × 𝑁𝑡
 

(5) 

|𝐻𝐿𝑟𝑒𝑓 − 𝐻𝐿𝑟𝑒𝑑𝑢𝑐𝑒𝑑|

𝐻𝐿𝑟𝑒𝑓
 

(6) 

Here, 𝑢𝐹𝐸𝑀 , 𝑢𝑟𝑒𝑑𝑢𝑐𝑒𝑑 are respectively the temperature values of the FEM and the different reduced 
models. 𝑁𝑥 and 𝑁𝑡 are respectively the number of spatial and temporal discretization elements of 
different simulation methods. 𝐻𝐿𝑟𝑒𝑓 and 𝐻𝐿𝑟𝑒𝑑𝑢𝑐𝑒𝑑 respectively refer to the heat loss of the reference 
solution and the different reduced models. 
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Figure 1: Average temperature difference between reference solution and full POD and PGD approximations. 

    

Figure 2: Temperature profiles of the reference solution, PGD with 15 modes and full POD with 15 modes (solid lines), full POD 

with 2 modes (dashed lines) and PGD with 2 modes (dotted lines). The purple line indicate the absolute temperature difference 

between the reference solution and the solution of PGD with 15 modes, at the moment of t=100 hours. Thickness = 0 refers to 

outside. 
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Figure 3: Relative deviation of heat loss between reference solution and full POD and PGD approximations. 

Figure 1 illustrates that, the accuracies of full POD and PGD increase as the number of their 
construction modes raises. It is also shown that, the accuracy of the full POD model increases faster 
than the PGD model, therefore with the same number of construction modes, the accuracy of the full 
POD model tends to be higher than the PGD model. In addition, one can see that for both models, a 
relatively accurate result can be reached with a sufficient number of construction modes: the relative 
errors for the two reduced-order models go below 1% even with a limited number of modes (less than 
8 modes). 

Confirming the result of Figure 1, in relation to the temperature profiles, Figure 2 shows visually 
there is no difference between the reference solution, the PGD approximation with 15 modes and the 
full POD approximation with 15 modes. In addition, the right y-axis of Figure 2 indicates that, the 
absolute temperature difference between the reference solution and the solution of PGD with 15 
modes is already very small (less than 8 × 10−4). Moreover, as the absolute temperature difference 
between the reference solution and full POD with 15 modes is smaller than 1 × 10−10, this result is 
not presented in Figure 2. These outcomes confirm that with a sufficient number of construction 
modes both full POD and PGD can provide an accurate result. On the other hand, larger differences 
can be respectively found between the reference solution and the solution calculated by the full POD 
and PGD with only 3 modes. 

Comparing with Figure 1, a very similar result can be found in Figure 3 – in relation to the relative 
deviations of heat loss from the reference solution, the results of the two reduced models decrease as 
the number of their construction modes increase and these relative deviations can be reached below 
1% with a very limited number of modes. However, for both of the two reduced models, after 9 modes 
this improvement becomes negligible. These findings indicate that the performance of all the model-
order-reduction methods do not vary much for quantifying the heat loss instead of calculating the 
temperature profile. 

 

3.4.1.3 Results of using POD for different problems 

In section 3.4.1.2, it was shown that the POD model constructed based on the full set of snapshots 
can provide a very accurate result when simulating the same system. However, in practice this 
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recalculation of the same problem does not add any value, as all the information is already included 
in the matrix of snapshots. Instead, the use of POD to construct a reduced model for simulating 
different problems is investigated in relation to: 

1. longer simulation period. 

2. variations in the boundary conditions, material properties and component geometry. 

Longer simulation period 

To compare the accuracy of the POD models constructed by different simulation periods, the relative 
deviations of heat losses between the reference solution and POD models with the snapshots taken 
from different shorter simulation periods are shown in Figure 4.  

 

Figure 4: Relative deviations of heat losses between reference solution and POD models constructed by the snapshots of different 

simulation periods. 

Figure 4 illustrates that, except for the POD constructed from the 3 and 6 hours’ snapshots, the 
accuracies of the other POD models increase as the number of their construction modes raises. 
However, after 9 modes this improvement becomes negligible. It is also shown that the performance 
of using POD for simulating problems with longer simulation period can provide an accurate result.  
Only when the number of snapshots is really insufficient (from simulation intervals three or six 
hours), an inaccurate result may be obtained. 

Boundary conditions, material properties, component geometry 

Until now, the POD model is constructed for solving a problem by making use of the boundary 
conditions, material properties and component geometry which are described in section 3.4.1.1. To 
further investigate the performance of using POD for simulating problems varying in these factors, 
the relative deviations of heat losses between the reference solution and the POD approximations in 
relation to the 6 scenarios mentioned in section 3.4.1.1 are shown in Figure 5. 
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Figure 5: Relative deviations of heat losses between reference solution and the POD models constructed with different boundary 

conditions, material properties and component geometry. 

Figure 5 shows that, the same as in Figure 4, the accuracy of using POD for simulating different 
problems increases as the number of their construction modes raises and after 9 modes this 
improvement becomes very small. As a result, it is illustrated that in all the 6 scenarios, with a 
sufficient number of construction modes, the POD method can provide an accurate result. In addition, 
comparing with the results of all the 6 scenarios, only fairly small differences among them can be 
observed. 

3.4.1.4 Discussion 

Combining the results of Figures 1 to 5, we can conclude that, with enough number of modes the 
PGD method can provide a relatively accurate result. In relation to the POD, only when the size of 
the snapshots is six hours or lower, an inaccurate result may be obtained. Further, it is shown that the 
use of POD to construct a reduced model for simulating different problems can provide an accurate 
result (Figures 4 and 5), and hence the robustness of the POD method is confirmed. 

3.4.2 Probabilistic case study 

In section 2.4.1 we have shown that both PGD and POD methods can provide a relatively accurate 
result for the deterministic simulation of the heat transfer problem. However, since there are 
numerous uncertainties in the properties of building materials and components, in construction 
geometry, in climatic loads etc., a probabilistic method is of crucial importance for obtaining not only 
the related values but also the distributions of the target outcomes. A variety of probabilistic 
modelling approaches for uncertainty propagation has been developed over the last decades 
(Oberkampf et al., 2002; Helton, 1994; Draper, 1995; Helton and Davis, 2003; Lee and Chen, 2009). 
Among them, sampling-based uncertainty propagation through Monte Carlo approaches is the most 
versatile and widely used, because of its general applicability and typical robustness (Janssen, 2013). 
A detailed introduction of (quasi-) Monte-Carlo based uncertainty analysis for the hygrothermal 
simulations are respectively presented by  (Hou et al. 2019) and (Janssen, 2013). 
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3.4.2.1 General information 

In this probabilistic case study, the mean and standard deviation of the distribution of cumulated heat 
loss over one year are simulated within the framework of Monte Carlo. In addition, a Sobol’ sequence 
is used for minimizing the number of the needed simulations (Hou et al. 2018). In order to evaluate 
the performances of using POD and PGD for the probabilistic case study, the absolute errors between 
a reference solution and the related POD and PGD approximations are calculated. Here, the reference 
solution is calculated by 10 repetitions of a 214-runs scrambled Sobol’ sequence (Hou et al. 2018), 
and each run of the simulation is simulated by the FEM with 200 mesh elements with the simulation 
period of one year and a fixed time step of one hour. The reference solution for the mean of the 
resulting heat loss distribution is 74.0071 kWh. 

3.4.2.2 Input parameters 

In this section, instead of using the fixed values of the parameters in relation to the boundary 
conditions, material properties and component geometry as described in section 3.5, these parameters 
are considered probabilistic. An overview of the distributions of these probabilistic parameters is 
given in Table 2. 

Table 2: Probabilistic input parameters and distributions 

Input parameter Input distribution 

Exterior climate  𝐷(𝐼𝑡𝑎𝑙𝑦, 𝐵𝑒𝑙𝑔𝑖𝑢𝑚, 𝑆𝑤𝑒𝑑𝑒𝑛) 

Interior temperature [℃ ] 𝑈(15, 25) 

Exterior heat transfer coefficient ℎ𝑒 [W/m²K]   𝑈(10, 40) 

Interior heat transfer coefficient ℎ𝑖 [W/m²K]   𝑈(6, 10) 

Wall thickness [𝑚] 𝑈(0.2, 0.5) 

Brick density [𝑘𝑔/𝑚³]. 𝑈(1700, 2100) 

Thermal conductivity [𝑊/𝑚𝐾] 𝑈(0.6, 1.0) 

Explanation of symbols used: 
U(a, b): uniform distribution between a and b 
D(a, b): discrete uniform distribution with options a and b 

 

 

In addition, in relation to the POD models, the POD basis is trained based on the central values of the 
above input distributions. More specifically, for materials properties, the density of the wall 𝜌 is 1900 
𝑘𝑔/𝑚³, the thermal capacity 𝑐 and conductivity 𝜆 of the wall are respectively 870 𝐽/𝑘𝑔𝐾 and 
0.8𝑊/𝑚𝐾. The temperature at the exterior surface 𝑢𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 is governed by climate data of Gaasbeek 
(Belgium), and the indoor air temperature 𝑢𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 is 20℃ at the interior surface. The related interior 
and exterior surface transfer coefficient are ℎ𝑖 = 8 W/m²K and ℎ𝑒 = 25 W/m²K, respectively. In 
relation to the component geometry, the thickness of the wall 𝐿 is 0.35 𝑚. 

3.4.2.3 Results 

Since the results of the mean and the standard deviation of the heat loss are very similar, only the 
result of the mean is shown in this report, given that this is a good illustration of overall findings. 
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First, in order to evaluate the performance of POD with respect to the size of the snapshots, the 
absolute errors between the reference solution and POD models constructed by snapshots with 
different time periods are shown in Figure 6. Here, all the POD models are constructed by 15 modes. 
Moreover, for assessing the accuracy of POD with respect to the number of construction modes, the 
absolute errors between the reference solution and POD models constructed by different number of 
modes are shown in Figure 7. Here, in order to stay in line with the case study in section 3.5.4.2, the 
simulation period of the snapshots is one single day. At last, for obtaining an overview of the 
performance of different model order reduction methods, the simulation results of POD, PGD and the 
FEM in relation to the mean of the heat loss distribution are shown in Figure 8. Here, the simulation 
period of the snapshots of the POD models is one single day and the POD and PGD models 
respectively, are constructed by 6 and 15 modes. 

In addition, for all the models, the results of the mean of the heat loss distribution are derived by 10 
replications of a [23, … ,29]-runs of scrambled Sobol sequence. Moreover, 10 independent repetitions 
of the above 10 replications of the [23, … ,29] evaluations are made at each of these 7 sample sizes to 
obtain a robust conclusion of the accuracies of the different models.  

 

Figure 6: Absolute errors of POD models with the snapshots of different time periods. 

 

Figure 7: Absolute errors of POD models with different number of construction modes. 
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Figure 8: Absolute errors of POD models, PGD models and FE models. 

3.4.2.4 Discussion 

In Figure 6, except for the POD constructed by the snapshots of 3 and 6 hours, the absolute errors of 
all the other POD models are similar and decrease as the number of the simulations increase. The 
convergence rate here is approximately 1

𝑛
, here 𝑛 is the number of the samples. However, 

contradictory to Figure 4, the differences of the absolute errors between the POD models in Figure 6 
are smaller than the differences of the relative deviations between the POD models in Figure 4. 
Especially for a small number of simulation runs, these differences tend to be even smaller. 

Figure 7 shows that, except for the POD constructed with 3 modes, the absolute errors of the other 
POD models are very identical. Even for the POD models constructed by 6 and 15 modes, the absolute 
errors between these two models are very much the same. This result is different from the results 
shown in Figure 5. However, with 6 construction modes the relative deviations of all the POD models 
are around 10−4, hence the errors of these 6 modes POD models are 0.001 kWh to 0.01 kWh. 
Comparing with the absolute errors (0.01 kWh to 1 kWh) for the probabilistic analysis in Figure 7, 
the errors of these simulation models tend to be rather small, and hence have a very limited effect to 
the overall convergence behaviour of these POD models. 

It is shown in Figure 8 that, the absolute errors of the POD models constructed with 6 modes, the 
PGD models constructed with 15 modes and the FE models are very similar. More specially, for all 
of the three models, the absolute errors decrease as the number of simulations increase, with a 
convergence rate of approximately 1

𝑛
. In addition, combined with all the findings in Figure 6 to 8, in 

relation to the POD methods, it is shown that the accuracies of POD with 6 and 15 construction modes 
are very similar. Meanwhile, as the use of POD with less construction modes can significantly save 
the computational expense, especially for the probabilistic analysis when a large number of 
repetitions need to be performed, this computational saving could be tremendous. Therefore, the use 
of POD with a small number of modes (6 modes) is suggested. 
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3.5 Nonlinear Scenarios  

3.5.1 Applications for nonlinear scenarios 

In section 2.4, the accuracies of POD and PGD for simulating linear thermal performance have been 
investigated. However, in the real world, many of the hygrothermal simulations are inherently 
nonlinear, and hence this section studies the potential use of POD for (strong) nonlinear hygrothermal 
simulations. It should be mentioned that, as it was shown in section 3.4.1.2 that the accuracy of PGD 
is (mostly) lower than POD, the investigations in this section focus on the POD method only. 

For investigating the performances of POD for hygrothermal simulations, a reference benchmark 
which can assess the performance of different simulation models is required. In this report in order to 
demonstrate the study based on different levels of nonlinearity and complexity, three applications – 
the HAMSTAD benchmarks 2, 3 and 4 (Hagentoft, 2002) – are selected as the illustrative case studies. 
All of them have a one-dimensional geometrical structure, but are based on different transfer 
mechanisms with different combinations of boundary conditions and material properties.  

More specifically, HAMSTAD benchmark 2 analyses the isothermal moisture redistribution in one 
material layer caused by sudden drops of the relative humidity of the surroundings. HAMSTAD 
benchmark 3 centers on air transfer through a light weight wall, wherein the moisture and heat transfer 
are mainly driven by the air flow. HAMSTAD benchmark 4 analyses a wall with a hygroscopic 
finishing material at the inside, under the boundary conditions with relative humidity, heat and 
moisture loads at both inner and outer surfaces. It should be mentioned that, HAMSTAD benchmark 
4 represents a very strongly nonlinear and complicated case study since its climatic load is severe and 
its material properties are rather harsh (Hagentoft et al. 2004). Its climatic load contains various heat 
and moisture transfer phenomena such as moisture condensation induced by cooling, rain load, 
alternating drying and wetting, moisture redistribution across the contact surface between two 
capillary active materials, etc. On the other hand, the first layer of its material having an extremely 
fast liquid transfer.  

The complexity of HAMSTAD benchmark 4 makes it rather difficult for numerical simulation solvers 
to provide an accurate and stable solution. For instance, Hamopy (Rouchier, 2015) – the simulation 
tool used for HAMSTAD benchmark 3 and 4 – is not capable to simulate the whole process of 
HAMSTAD benchmark 4. Therefore, for benchmark 4, in order to investigate the performance of 
POD for the whole simulation period without losing the strong nonlinearity and complexity of this 
case study, the climatic load is kept in line with the reference climatic conditions, but with a reduction 
to 10 percent of the rain load. Detailed information about HAMSTAD benchmarks 2, 3 and 4 and 
their related construction geometries, material properties and boundary conditions can be found in 
(Hagentoft, 2002). 

In order to evaluate the performance of POD as a function of the number of construction modes, for 
all the three case studies the results derived by the standard FEM and POD models constructed by 
different number of modes are compared. The simulation results of the FEM are taken here as the 
reference solution. More specifically, for HAMSTAD benchmark 2, 3 and 4 their reference solutions 
are respectively calculated by the FEM with 200, 121 and 1501 spatial mesh nodes.  In addition, as 
mentioned in section 2, the POD is constructed for simulating new problems, hence for HAMSTAD 
benchmark 3 and 4, the performances of POD as a function of the size of their snapshots are evaluated. 
More specially, for HAMSTAD benchmark 3 several POD models are constructed by using snapshots 
from different time intervals (50 days, 30 days, 20 days, 10 days, 5 days and 1 day), and these reduced 
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models are used to predict the results of a new problem with a time period of 100 days. On the other 
hand, for HAMSTAD benchmark 4, different POD models are constructed by using snapshots of 
respectively 12 hours and 50 hours, and these reduced models are used to predict the results of a new 
problem with a time period of 120 hours. 

3.5.2 HAMSTAD benchmark 2 

For getting a direct view of the performance of POD in relation to HAMSTAD benchmark 2, the 
moisture content profiles at 100 hours of the reduced models constructed by different number of 
modes together with the results derived by the reference solution are shown in Figure 9.  

  

Figure 9: Moisture content profiles at 100 hours of the FE solution and solutions of the reduced models constructed by different 

number of modes. 

Figure 9 shows that the differences between the reference solution and the results of the other POD 
models are very small, except for the POD model constructed by 1 mode. With more than 10 
construction modes, there is no observable differences between the reference solution and the POD 
approximations. Hence, for HAMSTAD benchmark 2, with a relatively small number of construction 
modes, the POD method can provide an accurate result of the moisture distribution in the material 
layer. 

3.5.3 HAMSTAD benchmark 3 

In the case study of HAMSTAD benchmark 3, three research questions are studied: 1) the accuracy 
of POD as a function of the amount of construction modes when simulating the same problem, 2) the 
accuracy of POD as a function of the size of snapshot and the amount of construction modes when 
simulating new problems with longer simulation periods, and 3) compare the accuracies of POD and 
FEM as a function of construction modes or nodes. 
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3.5.3.1 The performance of POD when simulating the same problem 

In relation to HAMSTAD benchmark 3, both temperature and moisture distributions at 0.19 m 
(measured from the outside, the total thickness is 0.2m) in the building component simulated by 
different reduced models together with the result of the reference solution are shown in Figure 10. 

   
Figure 10: Temperature and moisture content evolutions at 0.19 m of the building component simulated by the FEM and the 

reduced models constructed by different number of modes. 

Figure 10 illustrates the temperature and moisture evolutions at 0.19 m of the building component 
simulated by different models. It is demonstrated that, the accuracy of POD method increases as the 
number of its construction modes raises. With respect to the temperature evolutions, with 10 
construction modes, the distribution of the temperature can be quantified rather accurately. On the 
other hand, it is shown that for obtaining a relatively accurate evolutions of the moisture content, at 
least 30 modes are needed. Therefore, comparing with quantifying the temperature evolutions, due to 
the stronger nonlinear behaviour of the moisture transfer mechanism, obtaining the moisture content 
profiles requires more construction modes. 

3.5.3.2 POD for simulating new problems with longer periods 

In section 2.5.2 and 2.5.3.1, it is shown that the POD model constructed based on the full set of 
snapshots can provide an accurate result when simulating the same system. However, in practice this 
recalculation of the same problem does not add any value, as all the information is already included 
in the matrix of snapshots. Instead, in this section we are investigating the use of POD to construct a 
reduced model for simulating different problems in relation to longer simulation period. In other 
words, the accuracies of the POD models constructed by different size of snapshots are evaluated. 
More specifically, for getting a more direct view of the performance of POD method as a function of 
the size of its snapshot, similar as before both temperature and moisture evolutions at 0.19 m of the 
building component simulated by FEM and the reduced models constructed by 25 modes and 
different size of snapshots are shown in Figure 11. In addition, in order to evaluate the accuracy of 
POD method as a function of  the amount of the construction modes, the average temperature and 
moisture content differences between the reference solution and POD models built by different size 
of snapshots, as a function of the amount of their construction modes are shown in Figure 12. 
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Figure 11: Temperature and moisture content evolutions at 0.19 m of the building component simulated by the FEM and reduced 

models constructed by 25 modes and different size of snapshots. 

Figure 11 is similar to Figure 10, but now for different size of snapshots. It is demonstrated that, with 
only one day of snapshot and 25 modes, the temperature evolutions can be obtained rather accurately. 
On the other hand, relative to the temperature evolutions, due to the stronger nonlinear behaviour of 
the moisture transfer mechanism, obtaining the moisture content profiles requires a much larger size 
of snapshot. 

 
Figure 12: Absolute average temperature (left) and moisture content (right) differences between the FE solution and solutions of 

the reduced models constructed by different size of snapshots and different number of modes. 

Figure 12 confirms the results of Figure 10 and Figure 11, the accuracy of POD method increases as 
the amount of their construction modes raises and as the size of their snapshot grows. Comparing 
with the average temperature differences between the reference solution and the results of different 
POD models, the average moisture content differences are a lot larger (larger than one order of 
magnitude). Hence, with the same size of snapshot, quantifying the distribution of the moisture 
content requires more construction modes than capturing the distribution of the temperature. In 
addition, Figure 12 demonstrates that, with less than 30 modes, relatively large accuracy differences 
are found between the results of the reduced models constructed by the snapshots of 20 days and 30 
days. One possible reason is that for HAMSTAD benchmark 3, since there is a large change of the 
air pressure gradient from the 20 days to the 21 days (Hagentoft, C. E., 2002), the snapshots that 
include this period contain the crucial information of the boundary condition and hence has the 
potential to be the base of a more accurate reduced model.  
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3.5.3.3 Compare POD with FEM 

In section 2.4, 2.5.2, 2.5.3.1 and 2.5.3.2, it was shown that the POD method can deliver accurate 
results when performing linear and nonlinear hygrothermal simulation and is capable to simulate new 
problems with longer simulation periods. However, to further illustrate the superiority of POD over 
the conventional method for instance FEM models, the accuracies of POD models and FEM 
constructed by the same number of modes and nodes are compared. The reference solution is 
calculated by FEM with 301 nodes. For the FEM, in order to obtain the same temperature and 
moisture content profiles as the reference solution, the intermediate values are calculated by 
interpolation. The results are shown in Figure 13. 

 

Figure 13: Average temperature and moisture content differences between the reference solution and solutions of the POD and 

FE models constructed by different number of modes and nodes. 

Figure 13 illustrates the average temperature and moisture differences of different models. It is 
demonstrated that, with the same number of construction modes and nodes, the accuracy of POD 
methods are (much) higher than FEM and the differences are almost larger than two orders of 
magnitudes. Therefore, for obtaining the same target accuracy, the POD method requires much less 
modes than the FEM. However, since POD method requires additional matrix multiplication 
operations than FEM when constructing the related stiffness and mass matrices for solving the system 
of equations, comparing the number of modes and nodes of POD and FEM can only be regarded as 
an indicator of their efficiencies. 

3.5.4 HAMSTAD benchmark 4 

As mentioned in   section 2.5.1.1, the fourth benchmark is a very strongly nonlinear and complicated 
case study, and hence its computational cost is rather high. In this section, instead of providing an 
exhausted investigation of the performances of POD as a function of the size of its snapshot and the 
number of its construction modes, only a limited selection of the scenarios are studied. More 
specifically, to illustrate the performance of POD as a function of the size of snapshots, two scenarios 
(POD models with snapshots of respectively 12 and 50 hours) are analysed. Moreover, in relation to 
the number of construction modes, in each of the two scenarios the performances of POD models 
with different number of modes are compared. 

The results are presented in the below two subsections. To illustrate moisture content and temperature 
distributions at the external and internal surfaces during the whole simulation period, the values of 
temperature and moisture content at the outer and inner surfaces of the structure are presented in 
Figures 14 to 17. On the other hand, in order to show moisture content and temperature profiles across 
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the wall at time steps during or after some rapid changes in climatic load, temperature and moisture 
profiles inside the structure are shown in Figures 18 to 27.  

3.5.4.1 Moisture and temperature distributions at the outer and inner surface 

 

Figure 14: Moisture content evolutions on outer surface simulated by FE and POD constructed by 12 (left) and 50 (right) hours 

snapshot, with different number of construction modes. 

 

Figure 15: Moisture content evolutions on inner surface simulated by FE and POD constructed by 12 (left) and 50 (right) hours 

snapshot, with different number of construction modes. 

 

Figure 16: Temperature evolutions on outer surface simulated by FE and POD constructed by 12 (left) and 50 (right) hours 

snapshot, with different number of construction modes. 
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Figure 2-17: Temperature evolutions on inner surface simulated by FE and POD constructed by 12 (left) and 50 (right) hours 

snapshot, with different number of construction modes. 

Figures 14 to 17 represent the moisture content and temperature evolutions at outer and inner surfaces 
of the structure simulated by different models. For POD models based on the snapshot of 12 hours 
(left figures), the differences between the reference solution and the POD model is relatively large, 
except for the 250 modes POD models. On the other hand, for the POD models constructed by the 
snapshot of 50 hours (right figures), differences between the models are visually very small, except 
for the POD model constructed by 100 modes. Therefore, with the same number of construction 
modes, POD models constructed by the snapshot of 50 hours are more accurate than those POD 
models with 12 hours’ snapshot for quantifying the moisture content and temperature distributions. 
And hence, the performances of POD models are improved by increasing the size of snapshot. 

Figures 14 to 17 also show that the accuracy of POD increases with the number of construction modes. 
However, for POD models with 12 hours’ snapshot, rather large errors can be found in the POD 
approximations with less than 250 modes. In addition, for POD models with 12 hours’ snapshot and 
built by 50 to 200 modes, the improvements of their accuracies are relatively small. On the other 
hand, a fairly good approximation can be obtained by POD models with 50 hours’ snapshot 
constructed by only 150 modes. Further, the differences between the reference solution and the results 
of POD models for quantifying the temperature distributions are visually (much) smaller than for 
quantifying the moisture content distributions. Therefore, using POD models to predict the 
temperature distributions requires a smaller size of snapshot and/or less construction modes than for 
quantifying the moisture content distributions. 

3.5.4.2 Moisture and temperature profiles inside the structure  
 

 

Figure 18: Moisture profiles at 12 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 
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Figure 19: Moisture profiles at 24 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 

 
 

 

Figure 20: Moisture profiles at 48 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 

 
 

 

Figure 21: Moisture profiles at 54 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 

 



637268 - RIBuild - H2020-EE-03-2014                                             Dissemination level: CO  

 

 

Page 27 of 77 

 

 

Figure 22: Moisture profiles at 78 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 

 

 

 

Figure 23: Moisture profiles at 96 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 

 

 

 

Figure 24: Moisture profiles at 120 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, with 

different number of construction modes. 
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Figure 25: Temperature profiles at 24 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, 

with different number of construction modes. 

 

 
 

 

Figure 26: Temperature profiles at 78 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, 

with different number of construction modes. 

 
 

 

Figure 27: Temperature profiles at 96 hours, simulated by FE and POD constructed by 12 (left) and 50 (right) hours snapshot, 

with different number of construction modes. 

Figures 18 to 27 confirm the results of Figures 14 to 17. Comparing the left and right parts of Figures 
18 to 27, it is demonstrated that with the same number of construction modes, the accuracy of POD 
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models constructed by a snapshot of 50 hours is relatively higher than those POD models with 12 
hours’ snapshot for quantifying the moisture and temperature profiles across the structure. On the 
other hand, from each sub-figures of Figures 18 to 27, it is illustrated that the accuracies of POD 
increase as the number of the construction modes raise. For the POD models with 12 hours’ snapshot, 
a roughly 250 modes are required in order to get a relatively accurate result. However, a rather good 
approximation can be obtained by the POD models with 50 hours’ snapshot with only 100-150 
construction modes.  

3.5.5 Discrete empirical interpolation method 

POD reduces the computational complexity and computational time for simulating a large complexed 
system by approximating the high dimensional process by its “most relevant information”. However, 
for nonlinear problems, similar as the conventional simulation methods (for instance the finite 
element method and finite volume method), the inefficiency arises from the high computational cost 
in repeatedly evaluating the nonlinear terms still in the scope of the dimension of the original problem 
(Chaturantabut et al. 2010). 

To overcome this bottleneck, Chaturantabut et al (2010) proposed the discrete empirical interpolation 
method (DEIM). The main idea is to approximate the nonlinear term by combining projection with 
interpolation. DEIM projects the nonlinear terms onto a reduced basis and evaluated at only several 
specific locations which are selected by a greedy algorithm. The component values at other locations 
can be interpolated through the reduced basis by an interpolation matrix that can be pre-computed 
offline (Tiso et al. 2013). Wherein, the reduced basis related to each nonlinear term are obtained by 
POD method. 

For investigating the potential use of DEIM for nonlinear hygrothermal simulations, HAMSTAD 
benchmarks 2 is selected as the illustrative case study. In order to evaluate the performance of DEIM 
as a function of the number of construction modes and interpolation points, the results derived by 
Finite Volume method (FV) with 200 volumes and the reduced models constructed by different 
number of modes (25 modes, 20 modes, 15 modes, 10 modes, 5 modes) and interpolation points (65 
points, 55 points, 45 points, 35 points, 25 points) are compared. The simulation results of the FV are 
taken here as the reference solution.  

In this report for getting a direct view of the performance of DEIM, the moisture content profiles at 
100 hours of the reduced models constructed by different number of modes and interpolation points 
together with the result of the reference solution are shown in Figure 28. In addition, to obtain a 
comprehensive view of the performance of DEIM as a function of the number of construction modes 
and interpolation points, the accuracies of different models with different number of modes and/or 
interpolation points are shown in Figure 29. 
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Figure 28: Moisture content profiles at 100 hours of the reference solution and solutions of the reduced models constructed by 

different number of modes and DEIM points. 

 

Figure 29: Average moisture content difference between the reference solution and solutions of the reduced models constructed 

by different number of modes and DEIM points. 

Figure 28 shows that for the DEIM model with 5 POD modes and 35 interpolation points, and the 
DEIM model with 10 POD modes and 25 interpolation points there is no observable differences 
between the reference solution and the DEIM approximations. Hence, for HAMSTAD benchmark 2, 
with a relatively small number of construction modes and interpolation points, DEIM can provide an 
accurate result of the moisture distribution in the material layer. 

Figure 29 presents an overview of the accuracies of different models constructed by different number 
of POD modes and DEIM points. It confirms the results of Figure 28, the accuracy of the DEIM 
method increases as the amount of their construction modes and interpolation points grows. On the 
other hand, Figure 29 also shows that with more than 45 DEIM points the accuracies of the reduced 
models do not increase significantly.  
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3.5.6 Discussion 

For HAMSTAD benchmarks 2 and 3, it is shown that the use of POD for simulating nonlinear 
hygrothermal performance has the potential to provide an accurate result and is able to predict the 
results of a new problem with longer simulation period. Moreover, for obtaining the same target 
accuracy, the POD method requires much less modes than the FEM. In addition, it is shown that the 
DEIM has the potential to further reduce the computational cost for simulating nonlinear 
hygrothermal performance. 

However, caution should be taken when choosing the number of simulation snapshots and 
construction modes to build a reduced model. In relation to the snapshots, it is strongly recommended 
to include the crucial information and the periodic patterns of the boundary conditions as much as 
possible. On the other hand, with respect to the modes, choosing an appropriate number of modes 
depends on the extent of the nonlinearity of the target problem. Normally the stronger the 
nonlinearity, the more modes is needed to obtain an accurate result. Therefore, in practice an 
appropriate size of snapshot could be selected at first and considered as the reference solution. Next, 
the reduced model was constructed by keeping adding modes and comparing the result with the 
reference solution until no further improvement can be obtained. Finally, the constructed reduced 
model was used for simulating new problems with a longer simulation time period. 

For HAMSTAD benchmark 4 similar conclusions are drawn, the accuracy of POD increases as the 
number of construction modes grows and the size of its snapshot raises, and the size of its snapshot 
tends to be the most effective factor. However, due to the very strong nonlinear behaviour of this case 
study, an accurate and stable solution is rather difficult to be derived by many numerical solvers. For 
the POD method, some instabilities are found during the simulation period especially for those POD 
models built by a relatively small size of snapshot and with a rather small amount of construction 
modes. Hence, the efficiency of POD may suffer from the strong nonlinear behaviour of the target 
simulation object, and a robust solver which can provide stable solutions for very strong nonlinear 
problems is highly demanded. 

3.6 Conclusion 

In Section 2 of this report, the performance of two model order reduction methods (POD and PGD) 
was investigated, based on both linear and nonlinear scenarios. In relation to the linear scenario, it is 
shown that the POD method is able to provide an accurate result with a fairly small size of snapshot 
(more than 6 hours) and relatively small number of construction modes (more than 6). It is also 
illustrated that, the use of POD to construct a reduced model for simulating different problems can 
provide an accurate result, and hence the robustness of the POD method is confirmed. In relation to 
the linear probabilistic case study, the accuracies of POD with 6 and 15 construction modes are very 
similar, and hence the use of POD with a smaller number of modes (6 modes) is suggested in order 
to reduce the overall computational expense as much as possible, but that issue still need to be 
quantified.  

On the other hand, for the nonlinear scenario the accuracy of POD is strongly depended on the extent 
of the nonlinearity of the target problem. Comparing with the linear scenario, much more construction 
modes and much larger snapshot are required in order to obtain an accurate result. In relation to the 
snapshots, we strongly suggest to include the crucial information and the periodic patterns of the 
boundary conditions as much as possible. Moreover, since the inefficiency of POD arises from the 
high computational cost in repeatedly evaluating the nonlinear terms, to further reduce the 
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computational cost of the hygrothermal simulation DEIM is studied. It shows that a significant 
reduction of the computational complexity can be achieved by implementing DEIM. 

In the RIBuild project, since a huge amount of time-consuming simulations need to be performed in 
order to provide an effective and comprehensive guidelines for internal insulation in historic 
buildings, the issue of the computational expense tends to be crucial. In this report, the potential of 
using model order reduction methods to reduce the computational expensive for different 
hygrothermal (thermal) analysis have been studied. Based on the results it is concluded that for linear 
and moderately nonlinear simulations, POD can significantly reduce the computational complexity 
of the original time-consuming simulations. On the other hand, for strong nonlinear simulations, some 
instability issues may occur and hence a more robust solver which can provide accurate and stable 
solutions is highly demanded. 
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4 Dynamic metamodels for hygrothermal simulations 

4.1 General information 

The research on metamodelling was conducted by Astrid Tijskens, who started in October 2015 as a 
PhD researcher at KU Leuven. This section gives a short overview of the progress of her work on this 
subject. To start, a literature study on metamodelling in general and neural networks in specific was 
performed, in order to get an overall understanding. The knowledge gained by this literature study 
was used to experiment with several types of metamodels. Different types of neural networks were 
applied to predict the hygrothermal response of two simplified case studies. Finally, the performance 
of the most promising neural network type was tested on a fully probabilistic case study. In addition, 
two conference papers on the use of neural networks for predicting the hygrothermal performance 
(International Building Physics conference, September 23-26 2018, Central European Symposium on 
Building Physics, September 2-5 2019) was written, as well as a journal paper (under revision).  

To start, an introduction on why metamodelling is useful is given in section 4.2. Next, section 4.3 
gives a theoretical summary of artificial neural networks. The application of different neural network 
types on a two simplified case studies is described in sections 4.4 and 4.5. Finally, in section 4.6, the 
performance of the most promising neural network type is evaluated on a fully probabilistic case 
study. 

4.2 Introduction 

In recent years, traditional deterministic assessments in building physics have evolved towards a 
probabilistic framework (Annex 55, 2015; Vereecken et al. 2015). When evaluating the hygrothermal 
behaviour of a building component, there are many inherently uncertain parameters, such as the 
exterior climate, geometry, material… A probabilistic simulation enables taking into account these 
uncertainties, which allows evaluating the hygrothermal behaviour and the related damage risks more 
reliably. However, this often involves thousands of simulations, which easily becomes 
computationally inhibitive, especially when analysing more-dimensional component connection 
details. To overcome this time-efficiency issue, the use of metamodels, which aim at imitating the 
original hygrothermal model with a strongly reduced calculation time, is studied. Many different 
metamodelling strategies exist, of which multiple linear regression (MLR) or polynomial linear 
regression might be the most frequently used. MLR attempts to model the relationship between 
multiple input variables and an output variable by fitting a linear equation. This often performs well 
when predicting aggregated values such as the total heat loss (Van Gelder et al. 2014). On the other 
hand, many damage criteria, such as wood decay or mould growth, require evaluation over time, as 
such damage often has a long incubation time, where after it accumulates. Hence, more advanced 
metamodelling strategies that can handle time series prediction are needed. Furthermore, the model 
must be able to capture the highly non-linear and non-stationary pattern of the hygrothermal response 
of building components. Currently, recurrent neural networks are the state-of-the-art when it comes 
to time series prediction or sequence modelling. Hence, this research focusses on recurrent neural 
networks, as they have proven successful in other non-linear and non-stationary research applications. 

4.3 Artificial neural networks 

Artificial neural networks (ANNs) are information-processing systems, inspired by the biological 
brain (McCulloch and Pitts, 1988; Rosenblatt, 1963; Rumelhart et al., 1986). The basic structure of 
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an ANN is a network of small processing units or nodes, which represent the neurons, joined to each 
other by weighted connections representing the synapses between the neurons. Before an ANN can 
be used to make predictions, it needs to be ‘trained’. By presenting the ANN input-output pairs of a 
training dataset, the network tries to fit its parameters to this data, and learns to predict the correct 
output. 

Many varieties of ANNs were developed over the years, with widely varying properties. Overall, two 
categories of ANNs exist: ANNs with acyclic connections, and those with cyclic connections. The 
first type is called feedforward neural networks (FNNs). Feedforward networks are frequently used 
for supervised learning tasks such as classification and regression. The most widely used form of 
FNN, and the one we focus on in section 4.3.1, is the multilayer perceptron. ANN with cyclic 
connections are referred to as feedback, recursive, or recurrent neural networks. These type of 
networks are particularly interesting when dealing with time-series or sequences and are discussed in 
Section 4.3.2.  

4.3.1 Multilayer perceptron 

Since a multilayer perceptron (MLP) does not have cyclic connection between its nodes, all nodes 
can be arranged into layers with connections feeding forward from one layer to the next. This is 
illustrated in Figure 30. The first layer is the input layer, here the input data is presented to the 
network. The last layer is the output layer, where the network produces its prediction data. In between 
the input and the output layer, there is at least one hidden layer. The outputs in each layer can be 
calculated given the outputs from the previous layers.  

 

Figure 30: A multilayer perceptron: all nodes can be arranged into layers with connections feeding 

 forward from one layer to the next. 

A training dataset (𝑿, 𝒀) contains multiple samples, where each sample is an (input data point 𝒙, 
output data point 𝒚) pair. The real-valued vector 𝑿 contains 𝑆 input data points (𝒙(1), 𝒙(2), … , 𝒙(𝑆)) 
where 𝑆 denotes the total number of samples. Each input data point 𝒙(𝑠) is a real-valued vector 
containing the different features (𝑥1

(𝑠)
, 𝑥2

(𝑠)
, … , 𝑥𝑓

(𝑠)
). Thus, the input vector 𝑿 has two dimensions: 

the number of samples 𝑆 and the number of features 𝑓. A feature is an input parameter, e.g. the 
exterior temperature. Hence, the input layer contains as many nodes as there are input features. The 
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real-valued vector 𝒀 contains 𝑆 output data points (𝒚(1), 𝒚(2), … , 𝒚(𝑆)). Each output data point 𝒚(𝑠) is 
a real-valued vector containing the different targets (𝑦1

(𝑠)
, 𝑦2

(𝑠)
, … , 𝑦𝐾

(𝑠)
). Thus, the output vector 𝒀 has 

two dimensions: the number of samples 𝑆 and the number of targets K. A target is a parameter the 
network tries to predict, e.g. the temperature at a certain position in the building component. Hence, 
the output layer contains as many nodes as there are output targets. The data points predicted by a 
model are labelled �̂�(𝑠). For convenience, the superscript (𝑠) is sometimes left out. 

4.3.1.1 Forward pass 

The network architecture consists of nodes 𝑗 and biases 𝑏. Each node 𝑗 is associated with an activation 
function 𝑙𝑗(∙). Each connection from node 𝑖 to 𝑗 is associated with a weight 𝑤𝑗𝑖. This notation follows 
the convention adopted in several foundational papers (Hochreiter and Schmidhuber, 1997; Gers et 
al., 2000; Gers, 2001, Sutskever et al., 2011) and denotes the ‘to-from’ weight corresponding to the 
directed connection to node 𝑗 from node 𝑖. The value 𝑣𝑗  of each node 𝑗 is calculated by applying its 
activation function to a weighted sum of the values of its input nodes (Equation 4-1). 

𝑣𝑗 = 𝑙𝑗 (∑ 𝑤𝑗𝑖 ∙ 𝑣𝑖

𝑖

) = 𝑙𝑗(𝑎𝑗) Equation 4-1 

The weighted sum inside the parentheses of Equation 4-1 is called the incoming activation and 
denoted as 𝑎𝑗. This computation is represented in diagrams by depicting nodes as circles and 
connections as arrows joining them (Figure 31). When appropriate, the exact activation function is 
indicated with a symbol, e.g. 𝜎 for sigmoid. 

 

Figure 31: Each node in an artificial neural network computes a (nonlinear) function of a weighted sum of its inputs. 

Several neural network activation functions are plotted in Figure 32. The most common choices are 
the hyperbolic tangent 

tanh(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 Equation 4-2 

and the logistic sigmoid 
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σ(𝑥) =
1

1 + 𝑒−𝑥
 Equation 4-3 

The two functions are related by the following linear transformation:  

tanh(𝑥) = 2𝜎(2𝑥) − 1 Equation 4-4 

Hence, they are largely equivalent as activation functions. However, their output ranges are different; 
if an output between 0 and 1 is required (e.g. the output represents a probability), the logistic sigmoid 
should be used. An crucial feature of both the hyperbolic tangent and the logistic sigmoid is their 
nonlinearity. Nonlinear neural networks are more powerful than linear ones since they can model 
nonlinear equations. Nonlinear networks can gain considerable power by using successive hidden 
layers (Hinton et al., 2006; Bengio and LeCun, 2007), in contrast to linear networks, where multiple 
linear layers have the same processing capacity as a single hidden layer. Another key property is that 
both functions are differentiable, which allows the network to be trained with gradient descent (see 
further). 

 

Figure 32: Neural network activation functions. 

The activation function at the output nodes depends on the application. For regression tasks, typically 
a linear output is used. For multiclass classification, though outside the scope of this research, usually 
a softmax nonlinearity is applied. 

4.3.1.2 Loss function 

When an MLP is trained, it is presented with input-output pairs. An input data point 𝒙 is presented to 
the input layer, each hidden layer is successively computed, until an output �̂� is generated. This 
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process is the forward pass of the network. Learning is accomplished by iteratively updating each of 
the weights to minimize a loss function ℒ(�̂�, 𝒚), which penalizes the distance between the predicted 
output �̂� and the true output 𝒚. The mean squared error (MSE) is by far the most popular loss function. 
This loss function ensures that a large error receives much greater attention than a small error. The 
MSE criterion is optimal and results in a maximum likelihood estimation of the weights if the 
distributions of the feature vectors are Gaussian (Chauvin and Rumelhart, 1995). This is desirable for 
most applications. In some situations, other loss functions such as the mean absolute error, maximum 
absolute error, and median squared error, may be preferred. 

4.3.1.3 Backpropagation 

The most successful learning algorithm is backpropagation (Rumelhart et al., 1986). The 
backpropagation algorithm tries to minimise the loss function, using an optimal set of network 
parameters (weights and biases). To do this, backpropagation calculates the partial derivative of the 
loss function ℒ with respect to each parameter in the network, by iteratively applying the chain rule. 
Because the loss is a function of the outputs from the network, the errors are calculated backwards, 
starting from the output layer. Once the input layer is reached, the network parameters are updated 
by gradient descent.  

To calculate the gradient, backpropagation proceeds as follows. First, one input data point 𝒙 is 
propagated forward through the network: at each node a value 𝑣𝑗  is calculated and in the output layer 
the outputs �̂� are produced. At each output node 𝑘, a loss function value ℒ(�̂�𝑘, 𝑦𝑘) is computed. 
Subsequently, for each output node 𝑘, the error 𝛿𝑘 is calculated as follows: 

𝛿𝑘 =
𝜕ℒ(�̂�𝑘, 𝑦𝑘)

𝜕�̂�𝑘
∙ 𝑙′𝑘(𝑎𝑘) Equation 4-5 

with 

𝜕ℒ(�̂�𝑘, 𝑦𝑘)

𝜕�̂�𝑘
= �̂�𝑘 − 𝑦𝑘 Equation 4-6 

and where 𝑙′𝑘 measures how fast the activation function 𝑙𝑘 changes with its incoming activation 𝑎𝑘 – 
it is the derivative of 𝑙𝑘 with respect to 𝑎𝑘. Given these errors 𝛿𝑘, the error 𝛿𝑗 for each node 𝑗 in the 
previous layer is calculated as follows:  

𝛿𝑗 = 𝑙′(𝑎𝑗) ∑ 𝛿𝑘 ∙ 𝑤𝑘𝑗

𝑘

 
Equation 4-7 

This step is repeated for each previous layer to yield the error 𝛿𝑗 for every node 𝑗 given the error for 
each node connected to 𝑗 by an outgoing connection. Thus, the error is ‘backpropagated’, hence the 
name of the algorithm.  

This process of calculating the error 𝛿𝑗 for every node 𝑗 is repeated for each input data point 𝒙(𝑠) of 
the training set. Each value 𝛿𝑗

(𝑠) represents the derivative 𝜕ℒ 𝜕𝑣𝑗
(𝑠)

⁄  of the loss function with respect 
to that node’s incoming activation, for one input data point. Given the values 𝑣𝑗

(𝑠) calculated during 
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the forward pass, and the values 𝛿𝑗
(𝑠) calculated during the backward pass, the overall error terms ∆𝑗 

for every node 𝑗 are obtained as follows: 

∆𝑗= ∑ 𝛿𝑗
(𝑠)

∙ 𝑣𝑗
(𝑠)

𝑆

 
Equation 4-8 

Finally, the partial derivative of the loss function ℒ with respect to a parameter 𝑤𝑗𝑖 is: 

𝜕ℒ

𝜕𝑤𝑗𝑖
=

1

𝑆
∆𝑗 Equation 4-9 

4.3.1.4 Gradient descent algorithm 

Once the derivative of the loss ℒ with respect, to the network parameters is calculated, the weights 
are updated by a gradient descent optimization algorithm. Because the loss surface is non-convex, 
there is no assurance that backpropagation will reach a global minimum. However, several 
optimization techniques exist that allow escaping local minima. The most common optimization 
algorithm is stochastic gradient descent (SGD) using mini-batches. With batch size (i.e. the number 
of samples presented to the network before updating its weights) equal to one, the stochastic gradient 
update equation can be written as follows: 

𝔀 ← 𝔀 − 𝜂∇𝔀𝐹𝑖 Equation 4-10 

where 𝜂 is the learning rate and ∇𝔀𝐹𝑖 is the gradient of the objective function with respect to the 
parameters 𝔀 as calculated on a single example (𝑥𝑖, 𝑦𝑖). Here, ∇𝔀𝐹𝑖 is equal to 𝜕ℒ

𝜕𝑤𝑗𝑖
. Many variants 

of SGD are used to accelerate learning. AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), and 
RMSprop (Hinton et al., 2012) tune the learning rate adaptively for each feature. The popular 
algorithm AdaGrad adapts the learning rate by caching the sum of squared gradients with respect to 
each parameter at each time step. The step size for each feature is multiplied by the inverse of the 
square root of this cached value. AdaGrad leads to fast convergence on convex error surfaces, but 
because the cached sum is monotonically increasing, the method has a monotonically decreasing 
learning rate, which may be undesirable on highly non-convex loss surfaces. RMSprop modifies 
AdaGrad by introducing a decay factor in the cache, changing the monotonically growing value into 
a moving average. Other common SGD variants are momentum methods, which add a decaying sum 
of the previous updates to each update. When the momentum parameter is tuned well and the network 
is initialized well, momentum methods can train recurrent networks to levels of performance that 
were previously only achievable with computationally expensive Hessian-free optimization 
(Sutskever et al., 2013). 

4.3.1.5 Time-series modelling 

In time-series prediction, the MLP is sometimes used for predicting the next time step based on the 
current step (Soleimani-Mohseni et al. 2006). However, since the MLP does not have cyclic 
connections, the output depends solely on the current input, and not on any past inputs. Thus, each 
step of the sequence is processed independently. Hence, the MLP cannot model input-output relations 
that span multiple time steps.  
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When using MLP’s for time-series modelling, the different samples 𝑆 are no longer independent 
samples but each represent a time steps of a sequence. However, the MLP has no notion about this 
time correlation, hence we keep the notation superscript 𝑠 instead of 𝑡. Some MLP applications 
implicitly capture time by concatenating each input data point 𝒙𝑠 with some number of its immediate 
predecessors 𝒙𝑠−1, 𝒙𝑠−2, …, presenting the MLP with a sliding window of context about each data 
point (Cottrell et al., 1995; Kemajou et al. 2012). We refer to this type of network as a multilayer 
perceptron with a time window (MLP TW). The advantage of this approach is that this is an easy way 
to incorporate the time-aspect of the dataset, without needing to reach to the more computational 
expensive recurrent networks. On the other hand, the MLP TW fails to capture patterns outside of 
this window and as the window size needs to be determined beforehand, a considerable number of 
experiments is required to identify the optimum time window. Furthermore, this method only allows 
small sliding windows, as the dataset increases drastically with the window step size. 

In section 4.3.3 we will apply both the MLP and the MLP TW as metamodel for predicting the 
hygrothermal behaviour of a masonry wall. 

4.3.2 Recurrent neural network 

Recurrent neural networks are feedforward neural networks augmented by the inclusion of 
connections over adjacent time steps, introducing a notion of time into the model. These cyclic 
connections, called recurrent connections, connect the nodes within a hidden layer across time, but 
cannot connect nodes from different layers.  

As we are dealing with time-series, both the input vector 𝑿 and the output vector 𝒀 are three-
dimensional. A training set contains multiple samples, where each sample is an (input sequence, 
output sequence) pair, denoted (𝒙(𝑠), 𝒚(𝑠)). An input sequence is denoted (𝒙(𝑠)(1), 𝒙(𝑠)(2), … , 𝒙(𝑠)(𝑇)) 
where each data point 𝒙(𝑠)(𝑡) is a real-valued vector containing the different features 
(𝑥1

(𝑠)(𝑡)
, 𝑥2

(𝑠)(𝑡)
, … , 𝑥𝑓

(𝑠)(𝑡)
). An output sequence is denoted (𝒚(𝑠)(1), 𝒚(𝑠)(2), … , 𝒚(𝑠)(𝑇)), where each 

data point 𝒚(𝑠)(𝑡) is a real-valued vector containing the different targets (𝑦1
(𝑠)(𝑡)

, 𝑦2
(𝑠)(𝑡)

, . . . , 𝑦𝐾
(𝑠)(𝑡)

). 
The maximum time index of the sequence is called 𝑇. The sequences predicted by a model are labelled 
�̂�(𝑠)(𝑡). For convenience, the superscript (𝑠) is sometimes left out. 
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Figure 33: A recurrent neural network: recurrent connections connect nodes within the same layer across time. 

4.3.2.1 Forward pass 

At time 𝑡, nodes with recurrent connections receive input from the current data point 𝒙(𝑡) and also 
from hidden node values 𝒉(𝑡−1) in the network’s previous state. The output �̂�(𝑡) at each time 𝑡 is 
calculated given the hidden node values 𝒉(𝑡) at time 𝑡. Input 𝑥(𝑡−1) at time 𝑡 − 1 can influence the 
output �̂�(𝑡) at time 𝑡 and later through the recurrent connections in the hidden layers. The following 
two equations specify all calculations necessary for each time step in a simple recurrent neural 
network with one hidden layer, as shown in Figure 33: 

𝒉(𝑡) = 𝜎(𝑊ℎ𝑥𝒙(𝑡) + 𝑊ℎℎ𝒉(𝑡−1) + 𝒃ℎ) Equation 4-11 

�̂�(𝑡) = 𝑐(𝑊𝑦ℎ𝒉(𝑡) + 𝒃𝑦) Equation 4-12 

Here 𝑊ℎ𝑥 is the matrix of conventional weights between the input and the hidden layer and 𝑊ℎℎ is 
the matrix of recurrent weights between the hidden layer and itself at the previous time step. The 
vectors 𝒃ℎ and 𝒃𝑦 are bias parameters which allow each node to learn an offset. The complete 
sequence of hidden node values 𝒉 can be calculated by starting at 𝑡 = 1 and recursively applying 
Equation 4-11, incrementing 𝑡 at each step. The principle for multiple past time steps is similar. 

4.3.2.2 Unfolding 

The dynamics of the network depicted in Figure 33 across time steps can be visualized by unfolding 
it as in Figure 34. By unfolding, the network can be interpreted not as cyclic, but rather as a deep 
network with one layer per time step and shared weights across time steps. Hence, it is clear that the 
unfolded network can be trained across many time steps using backpropagation.  
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Figure 34: The recurrent network of Figure 33, unfolded across time steps. 

4.3.2.3 Backpropagation through time 

Backpropagation through time (BPTT) was introduced by Werbos (1990) and all recurrent networks 
in common current use apply this algorithm for their training. Given the partial derivatives of some 
differentiable loss function ℒ with respect to the network outputs, the next step is to determine the 
derivatives with respect to the weights. Like standard backpropagation, BPTT consists of a repeated 
application of the chain rule. The subtlety is that, for recurrent networks, the loss function depends 
on the activation of the hidden layer not only through its influence on the output layer, but also 
through its influence on the hidden layer at the next time step. Therefore 

𝛿𝑗
(𝑡)

= 𝑙′(𝑎𝑗
(𝑡)

) (∑ 𝛿𝑘
(𝑡)

∙ 𝑤𝑘𝑗

𝑘

+ ∑ 𝛿𝑖
(𝑡+1)

∙ 𝑤𝑗𝑖

𝑖

) Equation 4-13 

Each value 𝛿𝑗 represents the derivative 𝜕ℒ 𝜕𝑎𝑗⁄  of the total loss function with respect to that node’s 
incoming activation. The complete sequence of errors 𝛿 can be calculated by starting at 𝑡 = 𝑇 and 
recursively applying Equation 4-13, decrementing 𝑡 at each step. Note that 𝛿𝑗

(𝑇+1)
= 0 ∀𝑗, since no 

error is received from beyond the end of the sequence. Finally, keeping in mind that weights are 
shared across time steps, we sum over the whole sequence to get the derivatives with respect to the 
network weights:  

𝜕ℒ

𝜕𝑤𝑗𝑖
= ∑

𝜕ℒ

𝜕𝑎𝑗
(𝑡)

𝜕𝑎𝑗
(𝑡)

𝜕𝑤𝑗𝑖
𝑡

= ∑ 𝛿𝑗
(𝑡)

𝑣𝑖
(𝑡)

𝑡

 Equation 4-14 

4.3.2.4 Vanishing or exploding gradient 

Training recurrent networks can be challenging due to the difficulty of learning long-range 
dependencies. When errors are backpropagated across many time steps, the problem of vanishing and 
exploding gradients may occur (Bengio et al. 1994). As described in section 4.3.2.3 and 4.3.1.3, each 
of the network's weights receives an update proportional to the partial derivative of the loss function 
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with respect to the current weight in each iteration of training. If the weight along the recurrent 
connection is less than one, the contribution of the input at the first time step to the output at the final 
time step (i.e. the gradient) will decrease exponentially fast as a function of the length of the time 
interval in between. This is called the vanishing gradient problem, which can cause the network to 
stop learning. Vice versa, if the weight along the recurrent connection is more than one, the gradient 
will increase exponentially fast. This is called the exploding gradient problem, which can cause the 
network to become unstable. The latter can be solved relatively easily, because it can be truncated or 
squashed. Truncated backpropagation through time (TBPTT) (Williams and Zipser, 1989) imposes 
some maximum number of time steps along which error can be propagated. While TBPTT with a 
small cut-off can be used to alleviate the exploding gradient problem, it sacrifices the ability to learn 
long-range dependencies. Another solution is to clip the gradient at a pre-defined threshold (Pascanu 
et al., 2013). Vanishing gradients are more problematic because it is not obvious when they occur or 
how to deal with them. In the next section, a recurrent neural network architecture is described that 
uses carefully designed nodes as a solution to the vanishing gradient problem. 

4.3.2.5 Network architectures 

As with feedforward networks, many varieties of RNN have been proposed, such as Elman networks 
(Elman, 1990), Jordan networks (Jordan, 1990), time delay neural networks (Lang et al., 1990) and 
echo state networks (Jaeger, 2001). The most successful RNN architecture, however, is the Long 
Short-Term Memory network (LSTM), developed by Hochreiter and Schmidhuber (1997). More 
recently, the Gated Recurrent Unit (GRU) was proposed by Cho et al. (2014) and has gained growing 
interest ever since. The remainder of this section will hence focus on these two types of recurrent 
networks. 

LSTM 

Hochreiter and Schmidhuber (1997) introduced the LSTM primarily in order to overcome the 
vanishing gradient problem. In this model, each ordinary node in a hidden layer is replaced by a 
memory cell (Figure 35), which could be interpreted as a subnet. Each memory cell contains a 
recurrent self-connected node, the cell state, ensuring that the gradient can pass across many time 
steps without vanishing or exploding, and originally two multiplicative units, the ‘gates’, that control 
the flow of information to the cell state. Later, Gers et al. (2000) improved the LSTM by introducing 
the forget gate (Figure 36), which enables the cell to flush its internal state. To distinguish references 
to a memory cell and not an ordinary node, we use the subscript 𝑐. The multiplicative gates allow 
LSTM cells to store and access information over long periods of time, thereby mitigating the 
vanishing gradient problem. The term ‘gate’ was chosen because its value is used to multiply the 
value of another node. It the gate’s value is zero, then flow from the other node is cut off. If the gate’s 
value is one, all flow is passed through.  

The input node 𝑔𝑐 receives weighted input from the input layer 𝒙(𝑡) at the current time step and (along 
recurrent connections) from the hidden layer at the previous time step 𝒉(𝑡−1). The inputs are summed 
and run through a tanh activation function, although in the original LSTM paper, the activation 
function is a sigmoid. The input gate 𝑖𝑐 is a sigmoidal node that receives the same input as the input 
node. The value of the input gate multiplies the value of the input node and thus controls the flow of 
information from new input to the cell state. The cell state 𝑠𝑐 is the heart of each memory cell. It has 
a linear activation and a recurrent self-connection with fixed unit weight. Because this connection 
spans adjacent time steps with constant weight, error can flow across time steps without vanishing or 
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exploding. This connection is often called the ‘constant error carousel’. The forget gate controls what 
information from the previous cell state is flushed. With the forget gate, the equation to calculate the 
cell state on the forward pass is as follows: 

𝑠𝑐
(𝑡)

= 𝑔𝑐
(𝑡)

⨀ 𝑖𝑐
(𝑡)

+ 𝑓𝑐
(𝑡)

⨀ 𝑠𝑐
(𝑡−1) Equation 4-15 

The output node ℎ𝑐 receives information from the cell state 𝑠𝑐 and usually applies a tanh activation 
function, as this gives the output of each cell the same dynamic range as an ordinary tanh hidden unit. 
The output gate 𝑜𝑐 is a sigmoidal node that receives weighted input from the input layer at the current 
time step and from the hidden layer at the previous time step. The value of the output gate multiplies 
the value of the output node and thus controls what output is produced by the memory cell.  

 

Figure 35: The LSTM cell as originally proposed by Hochreiter and Schmidhuber (1997). 

Over the past decades, LSTM has proved successful at a range of real-world problems requiring long 
range memory, such as music generation (Eck and Schmidhuber, 2002), reinforcement learning 
(Bakker, 2002), speech recognition (Graves and Schmidhuber, 2005; Graves et al., 2006), natural 
langauge modelling (Sundermeyer et al., 2012), prediction of air pollution concentration (Xiang et 
al., 2017), financial marketing predictions (Fischer and Krauss, 2018), and many more. 
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Figure 36: LSTM memory cell with a forget gate as described by Gers et al. (2000). 

GRU 

Based on the LSTM architecture, Cho et al. (2014a) proposed the gated recurrent unit (GRU), which 
is much simpler to compute and implement. The GRU (Figure 37) has only two gates, the reset gate 
𝑟𝑐 and the update gate 𝑢𝑐, which both receive input from the previous hidden stateℎ𝑐

(𝑡−1) and the 
current input 𝑥(𝑡). In contrast to the LSTM, the GRU does not haven an internal state but only a 
hidden state. The output of the GRU is calculated as follows: 

𝑣𝑐
(𝑡)

= 𝑢𝑐ℎ𝑐
(𝑡−1)

+ (1 − 𝑢𝑐)𝑠𝑐
(𝑡) Equation 4-16 

Where,  

𝑠𝑐
(𝑡)

= tanh (𝑊𝑥(𝑡) + 𝑈(𝑟𝑐
(𝑡)

⨀ ℎ𝑐
(𝑡−1)

)) Equation 4-17 

Taking a linear sum between the previous state and the newly computed state is similar to the 
functioning of the forget gate and the input gate of the LSTM. The GRU, however, does not have a 
mechanism to control the degree to which its hidden state is exposed, but exposes the whole state 
each time. When the reset gate is close to 0, the hidden state is forced to ignore the previous hidden 
state and reset with the current input only. This effectively allows the hidden state to drop any 
information that is found to be irrelevant later in the future, thus allowing a more compact 
representation. The update gate, on the other hand, controls how much information from the previous 
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hidden state will flow to the current hidden state. As each hidden unit has separate reset and update 
gates, each hidden unit will learn to capture dependencies over different time scales. The units 
capturing short-term dependencies will tend to have frequently active reset gates, while the units 
capturing long-term dependencies will have mostly active update gates. 

 

Figure 37: The GRU as proposed by Cho et al. (2014a) 

The GRU network has proved successful at a range of real-world problems requiring long range 
memory, such as contextual video recognition (Jung et al., 2018), financial marketing predictions 
(Shen et al., 2018), speech recognition (Ravanelli et al., 2017) and many more. 

4.3.3 Convolutional neural network 

Convolutional neural networks are a class of deep feedforward neural networks most commonly 
applied to analysing images. The architecture of a CNN is analogous to that of the connectivity pattern 
of neurons in the human brain, where individual neurons respond to stimuli only in a restricted region 
of the visual field known as the receptive field. Collections of such fields overlap to cover the entire 
visual area. The convolution in a CNN copies the response of an individual neuron to visual stimuli. 
A convolution is a mathematical combination of two functions to produce a third function; it merges 
two sets of information. In the case of a CNN, the convolution is performed on the input data with 
the use of a filter to then produce a feature map. The filter slides over the input and at every position, 
a matrix multiplication is performed. This is repeated for each feature and the result is summed into 
a new feature map. In case of image processing, the input has four dimensions: samples, width 
(number of pixels), height (number of pixels) and channels (e.g. three RGB channels). The filter slides 
over the width and height, for each channel, as shown in Figure 38. The size of the filter determines 
how many input pixels transfer information to the next layer, i.e. the size of the filter determines the 
size of the receptive field. By using multiple filters, comparable to using multiple neurons in a hidden 
layer, different feature maps can be learned. 
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Figure 38: A convolutional operation on one channel of an image. 

4.3.3.1 Time-series modelling 

More recently, CNNs have been applied to sequence learning (van den Oord et al., 2016; Borovykh 
et al., 2017; Bai et al., 2018). In this case, the input has three dimensions: samples 𝑠, time steps 𝑡 and 
features 𝑓. Hence, the filter is one-dimensional and slides along the time steps. When working with 
time series or sequences, usually dilated causal convolutions are used. Causal convolutions ensure 
that the output of the filter does not depend on future inputs. In a dilated convolution, the filter is 
applied over an area larger than its length by skipping input values with a certain step. Stacked dilated 
convolutions enable networks to have very large receptive fields with just a few layers, while 
preserving the input resolution throughout the network as well as computational efficiency. Often, 
the dilation factor is exponentially increased for every layer, allowing the receptive field to grow 
exponentially with network depth. This principle is shown in Figure 39. 

 

Figure 39: Due to the causal dilated convolutions, an output time step receives information from more input time steps, i.e. the 

receptive field, with increasing number of hidden layers. 

4.3.3.2 Network architecture 

The architecture of the CNN network, shown in Figure 40, was based on the Wavenet architecture 
(van den Oord et al., 2016). Residual blocks with dilated causal convolutions and gated activation 
units [40] are stacked to create a larger receptive field. Each block has a residual connection to the 
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next block and a parameterised skip connection to the last two layers of the network, both of which 
speed up convergence and help training deep networks. 

 

Figure 40: The used CNN architecture with residual blocks and skip connections, based on the Wavenet architecture. 

A CNN does not have ‘memory’ the way the RNN does; the output at a certain time step does not 
depend on the output on previous time steps, as can be seen in Figure 39. However, thanks to the 
stacked residual blocks, the CNN has access to a large range of inputs at previous time steps. The 
advantage of this type of network is that output time steps can be calculated in parallel, which results 
in a much faster training and predicting compared to the RNN. A disadvantage is that one needs to 
know how large the receptive field should be when building the network, as information outside the 
receptive field cannot be used to predict the current time step. 

4.4 Explorative application on a very simplified case study 

4.4.1 Very simplified case study 

To explore the performance of the neural networks described above, they are applied to predict the 
hygrothermal performance of a 36 cm massive masonry wall without insulation. In this explorative 
study, the probabilistic aspect of the influencing parameters is not yet taken into account fully, as this 
allows for a more efficient exploring of several network architectures on a smaller dataset. The 
training and validation data was obtained via hygrothermal simulations in Delphin 5.8. To estimate 
whether frost damage, wood decay of embedded wooden beam ends and mould growth will occur, 
the temperature (T), relative humidity (RH) and moisture content (MC) are monitored at the 
associated positions for a period of 6 years (see Table 3). The used input parameters are shown in 
Table 4; the brick material properties are given in Table 5. To account for variability in boundary 
conditions, different years of the external climate were used, as well as different wall orientations. 
Since the interior climate is calculated based on the exterior climate, this variability is also included. 
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In total, 24 samples were simulated, of which 18 samples were used for training and 6 for validation. 
Given the time series of the external temperature and relative humidity, the wind-driven-rain load, 
the short-wave radiation and the internal temperature and relative humidity, the neural networks are 
trained to predict the T, RH and MC time series. 

Table 3: The monitored quantities for the damage patterns at different positions in the wall. 

Damage pattern Position Quantity 

Frost damage 

Decay of wooden beam ends 

Mould growth 

0.5 cm from exterior surface 

5 cm from interior brick surface 

Interior surface 

T, RH, MC 

T, RH 

T, RH 

 

Table 4: Used input parameters for hygrothermal simulations of brick wall. 

Input parameter Value 

Brick wall thickness 

External climate 

Internal climate 

Wall orientation 

Rain exposure factor 

Solar absorption 

Start year 

360 mm 

Gaasbeek, Belgium 

cfr. EN 15026 A 

U(0,360) 

1 

0.4 

D(1,24) 

* U(a,b): uniform distribution between a and b 

   D(a,b): discrete distribution between a and b 

 

Table 5: Properties of the used brick type. 

Material property Value 

Dry thermal conductivity (W/m²K) 

Dry vapour resistance factor (-) 

Capillary absorption coefficient (kg/m²s0.5) 

Capillary moisture content (m³/m³) 

Saturation moisture content (m³/m³) 

0.87 

14 

0.277 

0.25 

0.35 

4.4.2 Network architecture 

In this study, the MLP, MLP TW, LSTM and GRU are included. Several hyper-parameters should 
be pre-set before building and training the networks, including the number of hidden layers and the 
number of nodes in these hidden layers. All constructed networks have a single hidden layer, as 
comparative experiments showed no benefits using multiple hidden layers. Furthermore, networks 
with 32, 64, 128 and 256 hidden units were tested. In case of the MLP TW, a time window of 24 
hours was explored. A larger time window, which would be required to capture long-term 
dependencies, resulted in an extensive input dataset, which became too memory-intensive. The 
networks are trained by minimising the mean squared error (MSE) via backpropagation (MLP and 
MPL TW) or backpropagation-though-time (LSTM, GRU). Based on the results of comparative 
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experiments, the LSTM and GRU networks were trained using the RMSprop learning algorithm 
(Hinton et al., 2012) with a learning rate of 0.002. The MLP and MLP TW networks were trained 
using the Adam learning algorithm (Kingma and Ba, 2015) with a learning rate of 0.001. In general, 
before presenting data to the network, the data is standardised (zero mean, unit variance) to overcome 
influences from parameter units. In this study, both the input and output data are standardised, as this 
was found to improve training speed and accuracy.  

4.4.3 Performance evaluation 

The networks’ accuracy is tested on the validation data set and evaluated by three indicators: the 
normalised root mean square error (NRMSE), normalised mean absolute error (NMAE), and 
coefficient of determination (R2), formulated as follows: 

𝑁𝑅𝑀𝑆𝐸 =  
√

1

𝑇
∑(𝑦−�̂�)2

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
         𝑁𝑀𝐴𝐸 =

1

𝑇
∑|𝑦−�̂�|

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
         𝑅2 = 1 −

∑(𝑦−�̂�)2

∑(𝑦−�̅�)2
 Equation 4-18 

where 𝑦 is the true output, �̂� is the predicted output, �̅� is the mean of the true output and 𝑇 is the total 
number of time steps over all samples. The RMSE and the MAE are normalised to remove the scale 
differences between the different outputs. Although the networks are trained to predict all outputs 
simultaneously, these performance indicators are calculated for each output separately. This allows 
assessing which outputs are more difficult to predict and which ones are easy.  

4.4.4 Results and discussion 

Figure 41 presents the three performance indicators (rows) for all outputs (columns) and each network 
type. This graph shows that some outputs are easier to predict than others; all networks are capable 
to predict the temperature accurately, as well as the interior surface relative humidity. Since the wall 
temperature and surface relative humidity respond almost immediately to a change in boundary 
conditions, not much memory is needed to accurately predict these profiles; for these outputs, the 
MLP with a time window of 24 hours is about as accurate as the more complicated LSTM or GRU. 
The relative humidity and moisture content at 0.5 cm from the exterior surface (frost damage) and 
the relative humidity at the wooden beam ends (wood decay) appear less evident to model. As 
moisture is transported inwards only slowly, there is a large delay between a change in boundary 
conditions (e.g. a heavy rain shower) and the response in relative humidity in the wall. At the wooden 
beam ends, this response delay can go up to several months. Hence, the MLP and MLP TW, which 
have no or only limited memory, are incapable to capture these long-term temporal dependencies and 
perform poorly. The LSTM and GRU, on the other hand, are able to capture these complex long-term 
patterns because of their connections to information from long-past time-steps.  
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Figure 41: The performance indicators show that the temperature patterns are easy to model, while only the memory networks 

types (LSTM, GRU) are able to model the moisture content and relative humidity patterns accurately. 

Figure 42 to Figure 45 compare the predicted output to the true output time series of one sample not 
used for training, for each network type with 256 nodes. In case of the LSTM and GRU, the residuals 
휀𝑡 show that that the error is small on all outputs. 
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Figure 42: Predicted output (blue), true output (orange) and residuals of one sample of the test set, predicted by an MLP with 256 

nodes. 
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Figure 43: Predicted output (blue), true output (orange) and residuals of one sample of the test set, predicted by an MLP with a 

time window of 24 hours and 256 nodes. 



637268 - RIBuild - H2020-EE-03-2014                                             Dissemination level: CO  

 

 

Page 55 of 77 

 

Figure 44: Predicted output (blue), true output (orange) and residuals of one sample not used for training, predicted by an LSTM 

with 256 nodes. 
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Figure 45: Predicted output (blue), true output (orange) and residuals of one sample not used for training, predicted by a GRU 

with 256 nodes. 
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Furthermore, it was found that the number of hidden units appears to have limited effect on the 
prediction performance in case of the MLP and MLP TW, though it increased the training time 
(Figure 46). In case of the LSTM and GRU on the other hand, more hidden units resulted in an 
improved prediction performance and a decrease in training time. It appears that the memory 
networks converge faster when they have more hidden units. Though prediction accuracy is very 
similar for both the LSTM and the GRU, the latter required less training time as it has fewer network 
parameters. 

 

Figure 46: The training time for the memory network types (LSTM, GRU) decreases with increasing number of hidden units. The 

simulation time for one sample is 1 s for all network types. The reference simulation time for one sample in the original 

hygrothermal model is about 720 s. 

4.4.5 Conclusions 

In this study, the hygrothermal simulation model for a massive masonry wall is replaced by a much 
faster metamodel. Four different types of neural networks were considered as metamodel: a 
traditional multilayer perceptron (MLP), a multilayer perceptron with a pre-defined time window 
(MLP TW), a long-short term memory network (LSTM) and a gated recurrent unit network (GRU). 
Only the last two types have dynamic memory. The MLP TW has only access to the past time steps 
within the pre-defined time window, and the MLP tries to predict based on the current time step only. 
It was found that all network types were capable to predict the temperature accurately. Since the 
temperature responds almost immediately to a change in boundary conditions, not much memory is 
needed to capture these patterns. By contrast, only the LSTM and the GRU were able to accurately 
capture the long-term dependencies needed to predict the relative humidity and moisture content, as 
these respond much slower to a change in boundary conditions. Both types of memory networks were 
found to have almost equal predicting accuracy, though the GRU converged faster and thus required 
less training time. 

This study shows that it is possible to replace the hygrothermal simulation model with a much faster 
metamodel. Given the large number of calculations needed for an extensive probabilistic evaluation 
of the damage risks involved in applying internal insulation, this approach can decrease the total 
calculation time significantly. 

4.5 Explorative application on a simplified case study 

4.5.1 Simplified case study 

A massive masonry wall is evaluated as a 1D construction and consists of 30 cm solid ceramic brick 
with 1 cm of plaster as interior finishing. As this is an explorative study, not all influencing 
probabilistic parameters are taken into account yet, as this allows exploring different network types 
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and architectures more efficiently. The used probabilistic input parameters are shown in Table 7, the 
ceramic brick material properties are given in Table 7: Input parameter distributions. To account for 
variability in boundary conditions, future climate data of four Belgian cities (ClimateforCulture, 
2014), as well as different years of the data and different wall orientations are used. The wind-driven 
rain load is calculated based on the wall orientation and the exterior climate data. The interior climate 
is calculated according to European standard EN 15026, based on the exterior climate, and thus 
includes variability as well. The inputs are pre-processed to contain only time series, as this simplifies 
the network architecture. The wall orientation, which is a scalar input parameter, is adopted via the 
wind-driven rain load and the direct and diffuse short-wave radiation time series. The same output 
quantities used in the previous case study (Table 3) are used here as well. In total, 80 samples were 
simulated, of which 64 samples were used for training and 16 for testing.  

Table 6: Input parameter distributions 

Parameter Value 

Exterior climate D(Gent; Gaasbeek; Oostende, StHubert) 

Exterior climate start year D(2020; 2047) 

Wall orientation 

degrees from North 
U(0; 360) 

Interior climate [44] D(load A; load B) 
U(a, b): uniform distribution between a and b 
D(a, b): discrete distribution between a and b 

Table 7: Input parameter distributions 

Material property value 

Dry thermal conductivity (W/m²K) 0.87 

Dry vapour resistance factor (-) 140 

Capillary absorption coefficient (kg/m²s0.5) 0.046 

Capillary moisture content (m³/m³) 0.13 

Saturation moisture content (m³/m³) 0.24 

Before presenting the input and output data to the neural networks, all data are standardised (zero 
mean, unit variance). This ensures that all input features are on the same scale, which allows 
weighting all features equally in their representation. To ensure errors are penalised equally for all 
targets, the output data are standardised as well. Once the networks are trained on the train dataset, 
their performance is evaluated on the test dataset, as this gives an indication of the networks’ 
performance when used as a replacement of the original model. 

4.5.2 Network architecture 

In this study, the MLP, LSTM, GRU and CNN network types are included. The architecture of the 
neural networks is described in section 4.3. Table 8 shows the used hyperparameters of all network 
types. These parameters are chosen based on a limited number of experiments and thus might not be 
optimal. To find the most optimal parameters, a hyperparameter optimization is required, which is 
time intensive. As this is an explorative study only, this has not been covered yet. Additionally, all 
metamodels were constructed to have a similar number of trainable parameters, for reliable 
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comparison of training time and performance. For each network type, five replications are trained, 
since different initialisation of the network parameters can lead to different final models. 

Table 8: Neural network parameters 

NN 

type 

Hidden 

layers 

Hidden 

neurons 

Trainable 

parameters 
Optimizer 

Additional 

parameters 

MLP 5 512 1.1 ·106 Adam, lr = 0.002  

LSTM 3 256 1.3 ·106 RMSprop, lr = 0.002  

GRU 3 256 1.0 ·106 RMSprop, lr = 0.002  

CNN 22* 128** 1.2 ·106 Adam, lr = 0.002 filter width = 4 

* Two stacks of 11 layers with dilatation factors {1, 2, 4, 8, … , 512, 1024} 

** Number of filters in convolutional layers 

4.5.3 Performance evaluation 

The prediction accuracy of the different metamodels is evaluated using three performance indicators: 
the root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of 
determination (R2), quantified as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑(𝑦 − �̂�)2         𝑀𝐴𝐸 =

1

𝑇
∑|𝑦 − �̂�|         𝑅2 = 1 −

∑(𝑦−�̂�)2

∑(𝑦−�̅�)2 Equation 4-19 

where 𝑦 is the true output, �̂� is the predicted output, �̅� is the mean of the true output and 𝑇 is the total 
number data points. The performance indicators are calculated both for all outputs together as well 
as for each output separately. The first allows to easily compare the performance of different models, 
while the latter allows assessing which outputs are more difficult to predict. Additionally, the models’ 
training time is evaluated. 
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4.5.4 Results and discussion 

 

 

 

Figure 47: Examples of the predicted temperature and relative humidity course at the position of the wooden beam ends for the 

MPL (top), LSTM (middle) and CNN (bottom). Note that different samples are simulated. The prediction is shown in orange, the 

true value in blue. 

Figure 47 shows examples of the predictions for the temperature and relative humidity at the wooden 
beam ends by the different neural network types. For these predictions, samples from the test set were 
used. This figure clearly show that all networks are able to predict the temperature accurately, but 
only the networks with knowledge about the past can capture the pattern of the relative humidity. 

Predicted 

True 
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Figure 48 shows the performance indicators on the test set as defined by Equation 4-19, calculated 
over all outputs, as well as the training time for each neural network type. These results indicate that 
the MLP is not suited for time series prediction, due to its lack of information on past time steps. The 
RNNs and CNN on the other hand, perform almost equally well. However, the CNN is a factor 10 
faster to train compared to the RNNs. Whereas the RNN models take some 1,5 to 3,5 hours to train 
the current problem, the CNN models require only 15 to 20 minutes. The prediction time for these 
networks also differs: it takes 15 seconds for the RNN models to predict 16 samples, whereas it takes 
only 5 seconds for the CNN model. As a reference, the time required to simulate one sample with the 
original hygrothermal software is 4-5 minutes. 

 

Figure 48: The performance indicators, calculated over all outputs together, and training time for each neural network type. The 

dots show the results of the five replications, while the crosses represent the average result.  

 

Figure 49: The performance indicators, calculated over each output separately for each neural network type. The dots show the 

results of the five replications, while the crosses represent the average result. 

When looking at the performance indicators for each output separately, shown in Figure 49, it is clear 
that all models are suited to model the temperature profiles. As was already observed in Figure 47, 
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also the MLP performs adequately with respect to the temperatures. Because the wall temperatures 
responds almost immediately to a change in boundary conditions, not much memory is needed to 
accurately predict these time series. The relative humidity and moisture content series appear less 
evident to model. As moisture is transported inwards only slowly, there is a large delay between a 
change in boundary conditions (e.g. a heavy rain shower) and the response in relative humidity in the 
wall. At the wooden beam ends, this response delay can go up to several months. The MLP is clearly 
incapable to capture these long-term temporal dependencies, due to its lack of memory. The RNN 
and CNN models, on the other hand, are able to capture these complex long-term patterns because of 
their connections to information from past time-steps. In case of the relative humidity at the wooden 
beam ends, where the response delay is the largest, the CNN performs significantly better than the 
RNN models. RNN models have difficulty learning dependencies from a distant past, because the 
information needs to persist over a large number of time steps. The CNN on the other hand, has direct 
access to this long-term information, due to its architecture (see Figure 39). Hence, it is more suited 
to capture long-term dependencies. This is also visible in Figure 50 and Figure 51, which compare 
the true output of one test set sample to the output predicted by the LSTM and CNN model, 
respectively. The residuals (grey) indicate how large the error is between true output (blue) and 
prediction (orange). Compared to the CNN prediction, the LSTM predicted relative humidity at the 
beam ends shows larger residuals, and moreover over longer periods. This error is inherent to the 
LSTM (and GRU) architecture, because each predicted output time step depends on the previous 
predicted time step(s), which allows errors to accumulate. The CNN has no information on its 
previous predicted time steps, and thus suffers much less of this problem. However, a different error 
pattern can be observed in Figure 50; because of this lack of connections to previous predictions, 
more variability between consecutive output time steps is noted. This causes the predicted time series 
to be more noisy and explains why the CNN model performs slightly worse when predicting the 
moisture content or temperature. 

 

Figure 50: The true output (blue), the output as predicted by the LSTM model (orange) and the residuals 𝜺𝒕 (grey). 

Predicted 

True 
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Figure 51: The true output (blue), the output as predicted by the CNN model (orange) and the residuals 𝜺𝒕 (grey). 

4.5.5 Conclusions 

In this study, fast metamodels are used to replace heavy hygrothermal simulation models in 
probabilistic assessments of a building component. As the hygrothermal response of a building 
component is highly non-linear and transient, we opt for neural networks for time series as 
metamodel, as these have proven successful in many other fields. Three popular types of neural 
networks are considered: the multilayer perceptron (MLP), recurrent neural networks (RNN), of 
which the long-short term memory network (LSTM) and gated recurrent unit network (GRU) are 
included, and the convolutional neural network (CNN). The networks are trained to predict the 
hygrothermal time series such as the temperature, relative humidity and moisture content at certain 
positions in a masonry wall, based on the outdoor and indoor climate time series. The MLP has no 
memory and can only access the current input time step. The RNN’s and the CNN both have a 
memory mechanism, though it works differently for both network types: the RNNs carry information 
from past input and output time steps through the next one, while the CNN has direct access to 
multiple past input time steps at once but not to past output time steps. It was found that all network 
types were capable to predict the temperature accurately. Since the temperature responds almost 
immediately to a change in boundary conditions, not much memory is needed to capture these 
patterns. By contrast, only the RNNs and the CNN were able to capture the long-term dependencies 
needed to predict the relative humidity and moisture content, as these respond much slower to a 
change in boundary conditions. The CNN performed significantly better at predicting the relative 
humidity at the wooden beam ends, compared to the RNNs, due to the difference in memory 
mechanism. Additionally, the CNN is a factor 10 faster to train compared to the RNNs, because its 
architecture allows processing multiple time steps simultaneously, whereas this happens sequentially 
in case of the RNNs. To conclude, the CNN appears most suited for the prediction of highly non-
linear hygrothermal time series and shows promise to apply as metamodel in more complex 
probabilistic assessments. Further research is needed to see how the CNN performs when the 
probabilistic aspect is taken fully into account, i.e. when also scalar and categorical input parameters 
are included. 

 

Predicted 

True 
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4.6 Application on a fully probabilistic case study 

4.6.1 Case study 

The calculation object in this study is again a 1D cross section of a massive masonry wall. The 
masonry wall is simplified to a single isotropic brick layer; no mortar joints are modelled. Note also 
that no construction details such as corners or embedded wooden beam ends are modelled. For a 1D 
wall, the characteristics and boundary conditions that are expected to influence the hygrothermal 
performance significantly are considered probabilistic and are shown in Table 7. To deal with 
variability in climatic conditions, future climate data of four Belgian cities (ClimateforCulture, 2014) 
and different years of the data are used. To incorporate variability in the wall conditions, uniform 
distributions of the wall orientation, the solar absorption and the exposure to wind-driven rain are 
considered. The wind-driven rain load is calculated by using the catch ratio as described in (Blocken, 
2002). The catch ratio relates the wind-driven rain (WDR) intensity on a building to the unobstructed 
horizontal rainfall intensity and is function of the reference wind speed and the horizontal rainfall 
intensity for a given position on the building façade and wind direction. In this model, variability in 
wall position and potential shelters, trees or surrounding buildings are reckoned with by the exposure 
factor. Additionally, the transiency and variation of the wind speed is taken into account via the 
convective heat transfer coefficient ℎ𝑐 = ℎ0 + 𝑘𝑠 ∙ 𝑣𝑤𝑖𝑛𝑑

𝑘𝑒  (EN ISO 06946) where ℎ0 = 4 and 𝑘𝑒 = 1. 
The exterior moisture transfer coefficient is related to the exterior heat transfer coefficient through 
the Lewis relation. The properties of the brick wall itself are subjected to uncertainty as well. 
Therefore, a uniform distribution of the wall thickness is considered. Furthermore, as the brick 
material properties vary widely as well, different brick types are included. The characteristics of the 
currently used brick types can be found in Table 10. Finally, the interior conditions are calculated 
according to EN 15026 and variability in building use is taken into account by using two different 
humidity loads.   
The remaining boundary conditions are all variables either with small variations or of less importance 
for the current study of a 1D wall. Therefore, these boundary conditions are treated deterministically. 
An overview of the deterministic boundary conditions is given in Table 4.3. 
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Table 9: Probabilistic input parameters and distributions 

Parameter Value 

Exterior climate D(Gent; Gaasbeek; Oostende, StHubert) 

Exterior climate start year D(2020; 2047) 

Wall orientation [degrees from North] U(0; 360) 

Solar absorption [-] U(0.4; 0.8) 

Ext. heat transfer coefficient slope 𝑘𝑠 [J/m3K] U(1; 8) 

WDR exposure factor [-] U(0; 2) 

Brick wall thickness [m] U(0.2; 0.5) 

Brick material D(Brick 1; Brick 2; Brick 3) 

Interior climate  D(load A; load B) cfr. EN15026 

U(a, b): uniform distribution between a and b 
D(a, b): discrete distribution between a and b 

Table 10: Brick type characteristics 

Parameter Brick 1 Brick 2 Brick 3 

Dry thermal conductivity [W/m²K] 0.87 0.52 1.00 

Dry vapour resistance factor [-] 139.52 13.25 19.00 

Capillary absorption coefficient [kg/m²s0.5] 0.046 0.357 0.100 

Capillary moisture content [m³/m³] 0.128 0.266 0.150 

Saturation moisture content [m³/m³] 0.240 0.367 0.250 

Table 11: Discrete input parameters 

Parameter Value 

Exterior surface  

Long wave emissivity 0.9 

Interior surface  

Total heat transfer coefficient h [W/m²K] 8 

Moisture transfer coefficient β [s/m] 3 x 10-8 

Initial conditions  

Initial temperature [°C] 20 

Initial relative humidity [%] 50 

In Deliverable 4.1, the hygrothermal performance of a masonry wall was evaluated by looking at frost 
damage at the exterior surface, decay of embedded wooden beam ends and mould growth on the 
interior surface. The latter is especially important in case of thermal bridges, and thus of less 
importance in 1D simulations and excluded in this study. Table 12 gives an overview of the previously 
used damage prediction models and the required hygrothermal time series to evaluate them. The risk 
on frost damage is evaluated based on the number of moist freeze-thaw cycles per year at 0.5 cm from 
the exterior surface. A ‘moist’ freeze-thaw cycle is a freeze-thaw cycle that occurs in combination 
with a moisture content (in this case at 0.5 cm from the exterior surface) that is high enough to induce 
frost damage. In this study, a moisture content higher than 25% of the saturated moisture content is 
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assumed to be critical and thus to entail a risk on frost damage. Note that this is a rather arbitrary 
value, as currently no precise prediction criteria is at hand. An indication of the decay risk of wooden 
beam ends can be made using the VTT wood decay model, which calculates the percentage of mass 
loss of the wooden beam end based on the temperature and relative humidity (Viitanen et al., 2010). 
Alternatively, the VTT mould growth model can be used, as mould growth can be a sign that wood 
root might develop next. The VTT mould growth model calculates the Mould Index based on the 
fluctuation of the temperature and relative humidity (Ojanen et al., 2010). The Mould Index is a value 
between 0 and 6, going from no growth to heavy and tight mould growth. In the updated VTT model, 
the expected material sensitivity to mould growth is implemented as well. In the current studies, the 
materials are always assumed to belong to the class ‘very sensitive’, hence the obtained results will 
be worst case. Note, however, that in a 1D wall study solely a rough indication of the wood decay 
risk is acquired, as two and three dimensional heat and moisture transport as well as potential air 
rotations around the wooden beam end are neglected.  

Table 12: Damage prediction models and required Delphin output 

Damage pattern Prediction model 
Required hygrothermal 
time series 

Frost damage Moist freeze-thaw cycles T, RH, saturation degree 

Decay of wooden beam ends VTT wood decay model T, RH 

Mould growth Updated VTT mould growth 
model 

T, RH 

To perform a probabilistic evaluation of the massive masonry wall, the input parameters described 
above are sampled multiple times, using a Sobol sampling scheme. In this study, 960 samples are 
used, of which 768 are used for training and 192 for testing. The deterministic model is simulated 
once for each sampled input parameter combination, using the hygrothermal simulation environment 
Delphin 5.8. 

4.6.2 Network architecture 

The architecture of the CNN network used in this paper, shown in Figure 52, was based on the 
Wavenet architecture (van den Oord, 2016). Its structure is the same as decribed in section 4.3.3.2, 
but a modification is made to include the scalar input parameters (wall orientation, brick 
characteristics). In each residual block, the sequence inputs are conditioned on these scalar input 
parameters. This allows producing output patterns with different characteristics. 
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Figure 52: The used CNN architecture with residual blocks and skip connections, based on the Wavenet architecture. 

The network is trained to predict the hygrothermal time series given in Table 12, based on the input 
in Table 9, Table 7 and Table 10. Note that, instead of the moisture content, the saturation degree is 
now learned, as this was found to result in better predicting performance. The inputs are pre-processed 
to facilitate learning. The internal and external climate inputs are pre-processed to contain time series 
only; the categorical parameters start year and interior humidity load are incorporated and cut out, 
whereas the scalar parameters wall orientation, solar absorption and rain exposure are included in the 
climate time series but also preserved as scalar input parameter, as they provide extra useful 
information. Additionally, the different brick types, which is a categorical parameter, are replaced by 
the characteristics in Table 10, which are scalar parameters. This simplifies the network architecture, 
and allows more flexibility on using multiple brick types. This results in 6 input time series (exterior 
temperature, exterior relative humidity, wind-driven rain load, short-wave radiation, interior 
temperature and interior relative humidity) and 10 scalar inputs (exterior heat transfer coefficient 
slope, rain exposure factor, solar absorption, wall orientation, brick wall thickness and the 5 brick 
characteristics from Table 10). 

Before presenting the input and output data to the neural network, all data are standardised (zero 
mean, unit variance). This ensures that all input features are on the same scale, which allows 
weighting all features equally in their representation. To ensure errors are penalised equally for all 
targets, the output data are standardised as well. Once the networks are trained on the train dataset, 
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their performance is evaluated on the test dataset, as this gives an indication of the networks’ 
performance when used as a replacement of the original model.  

Before the network can be trained, the hyper-parameters need to be set. After a limited number of 
experiments, it was found that the filter width, number of layers and number of stacks did not really 
matter, as long as the receptive field is larger than about one year (8760 time steps). Also the number 
of filters appears of less importance, once larger than 64. The network is trained using the Adam 
learning algorithm. The learning rate is the amount of change to the network during each step of the 
learning process. At extremes, a learning rate that is too large will result in too large weight updates 
and the performance of the network will oscillate over training epochs. A learning rate that is too 
small may never converge or may get stuck on a suboptimal solution. Experiments showed that a 
learning rate between 0.0005 and 0.0015 is optimal. In this study, the following hyper-parameter were 
used: 

 Number of filters in skip connections 𝑠: 512 
 Number of filters in residual connections 𝑟: 256 
 Number of filters in end connections 𝑒: 128 
 Filter width 𝑓: 12 
 Number of layers: 3 
 Number of stacks: 1 
 Learning rate: 0.001 

4.6.3 Performance evaluation 

The prediction accuracy of the different metamodels is evaluated using the same three performance 
indicators as before: the root mean square error (RMSE), the mean absolute error (MAE), and the 
coefficient of determination (R2), quantified by Equation 4-19. The performance indicators are 
calculated both for all outputs together as well as for each output separately. Additionally, the 
accuracy of the post-processed damage predictions is evaluated using the indicators quantified by 
Equation 4-18, as the damage predictions are not standardized. 

4.6.4 Results and discussion 

In Table 13, the performance indicators for the network are given. Compared to the performance on 
the second simple case study (Figure 48), this is an improvement. The total train time of the networks 
was two hours on a computer with a dual NVIDIA RTX 2070 GPU. 

Table 13: Performance indicators on test set 

Performance indicator Value 

RMSE 

MAE 

R2 

0.079 

0.035 

0.994 

Figure 53 shows the predictions for the temperature, relative humidity and saturation degree at the 
wooden beam ends and exterior surface for a sample from the test set. At the top of each graph, the 
performance indicators for that output is given. Not all outputs are shown, as the previous case studies 
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showed that the other outputs were easy to predict. According to these results, the network is able to 
predict all outputs accurately.  

 

 

 
Figure 53: Example of a prediction (orange) of some of the hygrothermal time series, compared to the true output (blue) and the 

residuals (grey). 
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Figure 54 shows the damage prediction for the same test set sample, based on the true hygrothermal 
output (orange) and the predicted hygrothermal output (blue). Again, the performance indicators are 
given at the top of each graph. This indicates that both the Mould index at the wooden beam ends and 
the wood mass loss can be predicted quite accurately based on the network prediction. The indicators 
for frost damage score less well. Figure 55 shows the damage prediction for one of the worst 
performing samples. The number of moist freeze-thaw cycles is clearly overestimated here. These 
results should be put in perspective, however, as a difference of two moist freeze-thaw cycles is not 
much. Because the total number of cycles is low, a deviation of two cycles results in a high error 
according to the indicators. However, whether 6 or 4 moist freeze-thaw cycles occur, both are likely 
not high enough to cause frost damage. Thus, although the performance indicators score less well, 
these results are unlikely to influence decision making significantly. Note that these are the results 
for Belgian climates. In more severe climates, where a larger number of moist freeze-thaw cycles 
occurs, different results might be obtained. This has to be tested still. 

 

 
Figure 54: Damage prediction for the same sample used in Figure 53. 
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Figure 55: Damage prediction for one of the worst performing samples. 

In previous reports, the damage risk was assessed by looking at the total number of moist freeze-thaw 
cycles, the maximum mould index and the total wood mass loss after a certain period. For the current 
case study, these risk indicators are plotted in Figure 56, both for the true output (x-axis) and the 
network output (y-axis). This shows that most predictions are accurate but deviations occur in some 
cases. The mould index and wood mass loss at the wooden beam ends tends to be underestimated by 
the network predictions. In these cases, the fluctuations of the predicted relative humidity influence 
the damage models activation process and growth/decay rate negatively, thus resulting in an 
underestimation compared to the true output. 
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Figure 56: Comparison of the risk indicators predicted using the network output (y-axis) and by the true output (x-axis). 

4.6.5 Conclusions 

In this study, a convolutional neural network (CNN) is trained to predict the hygrothermal behaviour 
of a 1D masonry wall, taking into account all probabilistic input parameters. The network is trained 
to predict hygrothermal time series (temperature, relative humidity and saturation degree), which are 
subsequently used to predict damage using existing damage prediction models (moist freeze-thaw 
cycles, mould growth, wood decay). The results showed that the CNN is able to predict the 
hygrothermal outputs accurately. The damage predictions, based on the hygrothermal predictions by 
the network, are accurate in most cases as well. However, in some cases, the mould index and wood 
mass loss at the wooden beam ends are underestimated, due to the fluctuations of the predicted 
relative humidity which influence the mathematical damage models activation process and 
growth/decay rate negatively. The indicators for frost damage score low, due to relatively high errors. 
Because the total number of cycles is low, a deviation of a few cycles results in a high error according 
to the indicators. However, the total number of moist freeze-thaw cycles is low and likely not high 
enough to cause frost damage. Thus, although the performance indicators score less well, these results 
are unlikely to influence decision making significantly.  
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5 Summary and conclusions 

This report presents the second of two deliverables related to RIBuild’s WP 4 ‘Probabilistic 

assessment of interior insulation solutions’.  The key objective of WP4 is the development of an 
efficient strategy for the probabilistic hygrothermal assessment of interior insulation solutions.  That 
strategy involves Monte-Carlo-based repetitions of hygrothermal simulations, and hence requires an 
efficient deterministic hygrothermal simulator and an efficient probabilistic assessment approach.  
Prior to the initiation of the RIBuild project, both a deterministic simulator and a probabilistic metho-
dology were already available.  Their joint application to interior insulation solutions does however 
require further developments, primarily in relation to their numerical efficiency.   

The various tasks in WP4 hence focus on efficiency improvements of both the deterministic simulator 
and the probabilistic methodology.  Tasks 4.1 and 4.2 target the efficient one-, two- and three-dimen-
sional simulation of heat, air and moisture transfer in building components, Tasks 4.3 and 4.4 aim for 
the efficient probabilistic assessment of hygrothermal performances based on these simulations.  In 
the final Task 4.5, the developments of Tasks 4.1 to 4.4 are to be brought together in a final application 
example.  The first deliverable reported on the general developments in WP4 and on the specific 
results from Task 4.1 and Task 4.3.  This deliverable reports the findings from the specific activities 
on model-order reduction in hygrothermal simulations in Task 4.2 (Section 2) and on neural-network-
based metamodelling in Task 4.4 (Section 3).  

Section 2 reports on the investigation on the performance of two model order reduction methods, 
Proper Orthogonal Decomposition (POD) and Proper Generalised Decomposition (PGD), with linear 
and nonlinear calculation objects.  It is demonstrated there that the PGD method does not perform 
well, and the method did hence not get further consideration.  The POD method, contrarily, shows to 
perform very well for the linear thermal case, as only a limited number of construction modes and a 
small amount of snapshots are required to obtain accurate results.  This method furthermore does well 
when extrapolated to different problems and when applied in a probabilistic simulation study.  For 
the nonlinear hygrothermal case, the accuracy and performance of POD appears to strongly depend 
on the degree of nonlinearity of the calculation object.  Relative to the linear cases, (much) more 
construction modes and snapshots are required in order to obtain an accurate result.  Since the 
inefficiency of POD for nonlinear simulations arises from the high computational cost of repeatedly 
evaluating the nonlinear terms, the Discrete Empirical Interpolation method is studied to further 
decrease the computational cost of the hygrothermal simulation. This approach again brings a 
significant reduction of the computational complexity. 

Section 3 describes the examination of the performance of neural networks for metamodeling of 
hygrothermal behaviour.  To that aim, a convolutional neural network (CNN) is trained to predict the 
behaviour of a 1D masonry wall, taking into account all probabilistic input parameters.  The network 
is trained to predict hygrothermal time series (temperature, relative humidity and saturation degree), 
which are subsequently used to predict damage using existing damage prediction models (moist 
freeze-thaw cycles, mould growth, wood decay).  The results show that the CNN is able to predict 
the hygrothermal outputs accurately.  The damage predictions, based on the hygrothermal predictions 
by the network, are accurate in most cases as well.  However, in some cases, the mould index and 
wood mass loss at the wooden beam ends are underestimated, and the indicators for frost damage 
score low, due to relatively high errors.  But, although the performance indicators score less well, 
these deviations are unlikely to influence decision making significantly. 


