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modelling could be more systematic handling the different types of uncertainties (physical, model, 
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more detailed. 2) The economic optimization and related decision-making could be based on a 
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Executive Summary 
The objective of this report is to describe a critical analysis of the probabilistic approach and the 
conceptual aspects of the methodology used for probabilistic assessment and design for indoor 
climate in buildings with the aim to enrich and enhance the theoretical foundations and approaches.  

The descriptions and the overall approach presented and demonstrated in these references give a good 
illustration of application of probabilistic methods. The methods applied are generally state-of-the-
art methods and the applications within building energy assessment are at a high scientific level. The 
analysis of the references show two main areas where the methodology could be improved: 1) The 
uncertainty modelling could be more systematic handling the different types of uncertainties 
(physical, model, statistical and measurement), especially the model and statistical uncertainties could 
be modelled more detailed. Further, Bayesian statistics is recommended to be applied; 2) The 
economic optimization and related decision-making could be based on a more rational basis. A 
Bayesian decision theoretical framework is recommended to be considered. 

Further, modelling and quantification of model uncertainty in relation to HAM (Heat Air Moisture) 
transfer models are presented based on a number of papers and reports on HAM transfer modelling. 
The investigations show that only very limited data are available for quantification of model 
uncertainties, and therefore it is not possible at present to establish a probabilistic model for model 
uncertainties. However, a procedure / template is proposed for collection of the necessary data in the 
future.   
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1 Introduction 
The objective of this report is to describe a critical analysis of the probabilistic approach and the 
conceptual aspects of the methodology used for probabilistic assessment and design for indoor 
climate in buildings with the aim to enrich and enhance the theoretical foundations and approaches.  

The analysis is primarily based on the following references: 
1. Van Gelder L, Janssen H, Roels S. 2014. Probabilistic design and analysis of building 

performances: Methodology and application example. Energy and Buildings, 79: 202-211. [1] 
2. Van Gelder L, Payel D, Janssen H, Roels S. 2014. Comparative study of meta-modelling 

techniques in building energy simulation: Guidelines for practitioners. Simulation Modelling 
Practice and Theory, 49:245-257. [2] 

3. Janssen H. 2013. Monte-Carlo based uncertainty analysis: sampling efficiency and sampling 
convergence. Reliability Engineering & Systems Safety, 109:123-132. [3] 

4. Vereecken E, Van Gelder L, Janssen H, Roels S. 2015. Interior insulation for wall retrofitting 
- A probabilistic analysis of energy savings and hygrothermal risks. Energy and Buildings, 
89: 231-244. [4] 

5. Final report of Subtask 2 of Annex 55, 2015. [5] 

The following aspects in relation to the probabilistic design are described considering the approach 
for decision making for reliability aspects for engineering structures presented in ISO 2394 [6]:  

 General comments to above references, see section 2;  
 Uncertainty modelling of uncertainties relevant for the components and systems considered, 

including physical, model, statistical and measurement uncertainties, see section 3 and  
 Decision making using models, uncertainty quantification and reliability analysis, see section 

4. 

Section 5 describes modelling and quantification of model uncertainty in relation to HAM (Heat Air 
Moisture) transfer models.   
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2 General comments  
This section contains general comments to the five references mentioned in section 1 on the 
probabilistic approach and conceptual aspects of the methodology used for probabilistic assessment 
and design for indoor climate in buildings: 

1. The overall methodology applied in the references is good and reasonable, but the theoretical 
basis could be improved, see below. Further, also the link to existing standards / codes on 
probabilistic modelling in general should be improved. 

2. Application of a simulation-based approach is appropriate.  
3. Application of ‘meta-models’ to speed up the computational time is equivalent to application 

of response surfaces in e.g. structural reliability. It is not clear how the model and statistical 
uncertainties related to the ‘meta-models’ is estimated and included in the probabilistic 
methodology, see below.  

4. A systematic description and modelling of aleatory and epistemic uncertainties should be 
included, see below.   

5. The probabilistic approach should be seen together with the application within decision-
making. Here a life cycle, risk-based approach can be used, see below. 

2.1 Comments to reference 1 

Paper: Van Gelder L, Janssen H, Roels S. 2014. Probabilistic design and analysis of building 
performances: Methodology and application example. Energy and Buildings, 79: 202-211. [1] 

Summary: Building performance analyses are often based on deterministic simulations. Since many 
parameters are generally subject to uncertainty, this may result in unreliable predictions. The paper 
proposes a probabilistic analysis and design method to account for these uncertainties. The 
uncertainty propagation and analysis is based on application of Monte Carlo simulation and 
corresponding analyses of the output distributions. Since the deterministic performance models are 
often computationally expensive, so-called meta-models are used, replacing the original model, to 
reduce computational effort. Further, in this paper multi-layered sampling schemes are used. To 
measure reliability and convergence of expected value and standard deviation of performances, 
effectiveness and robustness are introduced as output uncertainty indicators. Effectiveness is defined 
as the ability of the design option to optimize the performance, while robustness is defined as the 
ability to stabilize this performance for the entire range of input uncertainties. The methodology is 
illustrated by a simplified application example. 

Comments: 

 Output evaluation: From a probabilistic point of view, the effectiveness and robustness 
measures cannot easily be transformed to uncertainty measures.  

 The stochastic modelling is summarized in Table 1: Some of the stochastic variables could be 
expected to be correlated (e.g. the climatic parameters) – the stochastic modelling does not 
include statistical dependencies. Further, statistical and model uncertainties are not included 
in the stochastic modelling. 

 The information illustrated in Figure 1 on heat demand could be used to model and quantify 
model uncertainty 
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Figure 1. ‘Comparison simulated and meta-modelled heat demand of validation dataset.’ from [1]. 

 

2.2 Comments to reference 2 

Paper: Van Gelder L, Payel D, Janssen H, Roels S. 2014. Comparative study of metamodelling 
techniques in building energy simulation: Guidelines for practitioners. Simulation Modelling Practice 
and Theory, 49:245-257. [2] 

Summary: Simulation of real system behavior is considered in this paper. Often the simulation models 
are complex with large calculation times. Therefore, these time-consuming simulation models are 
considered to be replaced by meta-models that approximates the original simulation model by a 
simplified mathematical model. In this paper, a strategy is presented that is reliable and time-efficient. 
Furthermore, polynomial regression (PR), multivariate adaptive regression splines (MARS), kriging 
(KR), radial basis function networks (RBF), and neural networks (NN) are compared on a building 
energy simulation problem. It is concluded that KR and NN are the overall best techniques. Although 
MARS perform slightly worse than KR and NN, it is preferred because of its simplicity.  

Comments: 
 It is noted that other meta-models could be relevant, e.g. Polynomial Chaos Expansion, see 

e.g. UQLab: The Framework for Uncertainty Quantification, [7] 
As in reference 1 also in this paper model uncertainty could be modelled on basis of e.g. the 
results in Figure 2, e.g. using the approach in ISO 2394 [6] and Eurocode EN 1990 [8]. 
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Figure 2. ‘Illustration of goodness-of-fit indicators to compare the meta-model output with the original model output.’ from [2].  

 

2.3 Comments to reference 3 

Paper: Janssen H. 2013. Monte-Carlo based uncertainty analysis: sampling efficiency and sampling 
convergence. Reliability Engineering & Systems Safety, 109:123-132. [3] 

Summary: Monte Carlo simulation is an important tool in assessments of the reliability and robustness 
of systems, structures or solutions. Since crude Monte Carlo simulation often requires a large number 
of simulations, the computational costs can be very large. To reduce that computational cost sampling 
efficiency and convergence are investigated in this paper. This includes ‘non-collapsing space-filling’ 
sampling strategies, illustrated with Latin hypercube designs. Further, a ‘sample-splitting approach’ 
is presented which makes it possible to assess the accuracy of Monte Carlo simulations. 

Comments: 

 Page 123: ‘In reliability, three methodology levels are commonly distinguished’: this is not 
completely correct. In Madsen, Krenk & Lind [9] four levels are defined, see also below. In 
addition to the three levels described in [3] also a level 4) is defined, where consequences are 
included, corresponding to a risk-based assessment. It is also noted that ISO 2394:2015 [6] 
defines three levels of assessment for design / decision making related to engineering 
structures: 

o Risk informed – corresponding to level 4) in [9]  
o Reliability based – corresponding to level 2) and 3) in [9]  
o Semi-probabilistic – corresponding to level 1) in [9]  

 It is noted that many additional sampling strategies can be found in the literature, see overview 
and implementations in UQLab: The Framework for Uncertainty Quantification, [7]: 

o Advanced sampling strategies (space-filling), including Monte-Carlo sampling, 
optimized latin hypercube sampling (LHS), low-discrepancy series (Sobol' and Halton 
sequences)  

o Sampling enrichment (nested LHS)  
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It is noted that some of these techniques are almost the same as those considered in the present 
paper. 

2.4 Comments to reference 4 

Paper: Vereecken E, Van Gelder L, Janssen H, Roels S. 2015. Interior insulation for wall retrofitting 
- A probabilistic analysis of energy savings and hygrothermal risks. Energy and Buildings, 89: 231-
244. [4] 

Summary: This paper considers interior insulation often used as post-insulation technique to improve 
the thermal performance of single leaf masonry walls. However, this technique has some drawbacks 
as a result of potential damage patterns such as frost damage, interstitial condensation and mould 
growth. To investigate the possible energy savings by this technique while avoiding hygrothermal 
failure, a risk assessment is important. This paper describes a probabilistic approach for this 
investigation, because uncertainty of parameters might result in widely varying results. The paper 
presents a decision tool based on a Monte Carlo simulation technique. Additionally, the influence of 
the rain load and some masonry characteristics is discussed.  

Comments: 
 Section 2.3: eq. (1) is an example where a (non-linear) regression model is fitted to available 

data. In a probabilistic approach, it is important to include the uncertainty associated with the 
regression parameters. This can be done using the Maximum-Likelihood technique where the 
uncertainty can be quantified using the Hessian matrix of the LogLikelihood function, see 
section 3.1. 

2.5 Comments to reference 5 

Report: Final report of Subtask 2 of IEA Annex 55, 2015. H Janssen, S Roels, L Van Gelder, P Das: 
Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and 
Cost (RAP-RETRO) - Probabilistic Tools. Report 2015:4; ISSN 1652-9162; Chalmers University of 
Technology, 2015. 

Summary: the aim of IEA Annex 55 is to provide a foundation for the integration of probabilistic 
approaches in analyses and designs of hygrothermal performances of buildings. This foundation is to 
consist of four parts: 

1. an overall framework and methodology for probabilistic analysis and design in relation to 
hygrothermal performances of buildings (subtask 3); 

2. probabilistic tools that permit qualitative and quantitative assessment of the impacts of the 
non-deterministic features in these (subtask 2); 

3. data sets characterising the stochastic variations of influencing parameters, for use in the 
qualitative and quantitative methods (subtask 1); 

4. guidelines for application of the general framework, probabilistic tools and stochastic inputs 
for reliability-based analysis and design (subtask 4); 

The primary objective of Annex 55’s Subtask 2 therefore is to appraise the advantages and 
disadvantages of existing probabilistic methods for qualitative and quantitative assessment with 
relation to their applicability within the particular context of building performance analysis and 
design. Subtask 2 does hence not intend to develop new probabilistic tools, instead it aims at 
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familiarizing building physical engineers and researchers with the possibilities and limitations of 
existing probabilistic tools adopted from various other fields. When applied within the overall 
probabilistic framework of Subtask 3, based on the guidelines for use of Subtask 4, and fed with the 
stochastic data from Subtask 1, these tools will allow the non-deterministic appraisal of the life cycle 
gains and costs of a thermal building retrofit, with attention for both the potential improvement as 
well as possible degradation resulting from such upgrades of residential buildings. 

Comments: 
 The descriptions and the overall approach presented and demonstrated in examples in the 

report give a good illustration of application of probabilistic methods. 
 Two remarks where methodology could be improved are: 

o The uncertainty modelling could be more systematic handling the different types of 
uncertainties (physical, model, statistical and measurement), especially the model and 
statistical uncertainties could be modelled more detailed, see the description in section 
4.  

o The economic optimization and related decision-making could be based on a more 
rational basis, e.g. using a Bayesian decision theoretical framework, see the 
description in section 4. 
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3 Uncertainty modelling  
Parameters subject to uncertainty are assumed to be modelled by stochastic variables and/or stochastic 
processes / stochastic fields. Uncertainties modelled by stochastic variables can generally be divided 
in the following groups: 
 
1. Physical uncertainty also denoted inherent uncertainty is related to the natural randomness of a 

quantity, for example the annual maximum mean wind speed or the uncertainty in the yield stress 
due to production variability. 

2. Measurement uncertainty is related to imperfect measurements of for example a geometrical 
quantity. 

3. Statistical uncertainty is due to limited sample sizes of observed quantities. Data of observations 
are in many cases scarce and limited. Therefore, the parameters of the considered random 
variables cannot be determined exactly. They are uncertain themselves and may therefore also be 
modelled by random variables. Are additional observations provided then the statistical 
uncertainty may be reduced.  

4. Model uncertainty is the uncertainty related to imperfect knowledge or idealizations of the 
mathematical models used or uncertainty related to the choice of probability distribution types for 
the stochastic variables.  

3.1 General uncertainty modelling 

In probabilistic design, the above types of uncertainty are usually treated by the reliability methods 
which will be described below. Another ‘type’ of uncertainty, which is not covered by these methods, 
is gross errors or human errors. These types of errors can be defined as deviation of an event or 
process from acceptable engineering practice and is generally handled by quality control measures 
related to design, execution and the operational phase. 

Realizations of uncertain parameters  nXX ,...,1X , such as wind and temperature, degradation 
parameters, and model uncertainties will take place during the lifetime. The uncertainties can be 
divided in aleatory and epistemic uncertainties. Aleatory uncertainty is inherent variation associated 
with the physical system or the environment (physical uncertainty) – it can be characterized as 
irreducible uncertainty or random uncertainty. Epistemic uncertainty is uncertainty due to lack of 
knowledge of the system or the environment – it can be characterized as subjective uncertainty, which 
can be reduced by better models, more data, etc. It is noted that some aleatory uncertainties ‘change’ 
to epistemic uncertainties when the system is realized. Model, measurement and statistical 
uncertainties can be characterized as epistemic uncertainties. In many cases, natural fluctuation 
(physical uncertainty) and insufficient information (model uncertainty) are the most important 
sources of uncertainty.  

The reference period for the use of the stochastic model is also important when modelling stochastic 
variables and processes. It is often assumed that ergodic stochastic processes may be used. However, 
the influence of long-term effects (e.g. climate change) could also be relevant to consider.  

In modelling climatic parameters, it is often relevant to consider two stochastic models: 
 A stochastic model for the long-term scatter, i.e. modelling the random point in time value 

using all measured / observed values. E.g. a Weibull distribution is often used for the 10 
minutes average wind speed. 
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 A stochastic model for the annual extreme, e.g. annual extreme wind speed. For the stochastic 
modelling only extreme values are used. Typically, a Gumbel (or a Generalised Extreme 
Values distribution) is used. 

Each of the stochastic variables niX i ,...,2,1,   is assumed to be modelled by a distribution function 
 iiX xF

i
α;  where iα  denotes the statistical parameters. Dependency between the stochastic variables 

can be modelled by joint distribution functions or correlation coefficients. A number of methods can 
be used to estimate the statistical parameters iα  in distribution functions, e.g. the Maximum 
Likelihood method, the Moment method, the Least Square method or Bayesian statistics. 

In general, the Maximum Likelihood method or Bayesian statistics are recommended. The Maximum 
Likelihood method gives a consistent estimate of the statistical uncertainties. In Bayesian statistics, 
it is possible to take subjective (prior) information consistently into account through a prior 
distribution. 

In the Maximum Likelihood method, the density and distribution functions for a stochastic variable 
X  are denoted: ),...,( 1 mX xf   and ),...,( 1 mX xF   where m ,...,1  are statistical parameters. n  
observations are assumed to be available: nxx ˆ,...,ˆ1 . The statistical parameters are determined using 
the Maximum-Likelihood method by maximizing the LogLikelihood function using a standard 
nonlinear optimizer. 

In general, the parameters m ,...,1  are determined using a limited number data and are therefore 
subject to statistical uncertainty. Since the parameters are estimated by the Maximum Likelihood 
technique they become asymptotically (number of data should be larger than 25-30) Normally 
distributed stochastic variables with expected values equal to the Maximum Likelihood estimators 
and covariance matrix equal to, see e.g. [10]: 
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where H  is the Hessian matrix with second order derivatives of the log-Likelihood function. The 
statistical uncertainty can easily be included in a probabilistic model. It is noted that statistical 
uncertainty can also be assessed by other methods, e.g. the Bootstrapping technique. 
 
Recommendations for stochastic modelling of uncertain parameters can be found in the JCSS (Joint 
Committee on Structural Safety) PMC (Probabilistic Model Code) [11]. 
 

3.2 A general framework for model uncertainty 

This section presents a general framework for modelling and estimation of model uncertainties related 
to application of meta-models. 
  



637268 - RIBuild - H2020-EE-03-2014                                             Dissemination level: CO  

 

 

Page 12 of 33 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Models and model uncertainty. 

Figure 3 illustrates how model uncertainty can be represented. It is assumed that Y(X) models the real 
/ ‘true’ behaviour of the system / component. Y models the output of the model and X models the 
input parameters subject to uncertainty which can be the physical uncertainty parameters, but also 
statistical and measurement uncertainties associated with the input parameters. 

The output can be performance measures such as  
 Energy demand 
 Air change rate of residential building when using natural ventilation 
 Heat loss, frost damage (e.g. measured by number of moist frost cycles per year), moisture 

level (e.g. number of hours RH on indoor surface larger than a critical level in January) 

Next, it is assumed that a complex, numerical expensive model, Y’(X) is available. The model 
uncertainty related to this model can e.g. be modelled by an additive stochastic variable ε’. It is noted 
that alternatively the model uncertainty can be introduced as a multiplicative stochastic variable, see 
examples in section 5. Finally, a meta-model / response surface, Y’’(X) can be fitted to the numerical, 
complex model, Y’(X). This implies an additional model uncertainty, which e.g. can be modelled by 
an additive stochastic variable ε’’. It is noted that ε’ and ε’’ can be dependent on X and that 
alternatively a multiplicative model can be applied.  

If the model uncertainty is modelled / quantified by a limited number of tests then additionally 
statistical uncertainty should be added. Finally, measurement uncertainties related to the test may be 
important and should be added. 

Input  
X: X1,X2,… 

‘True’ model:  Y(X) 
Numerical model:  Y’(X) = Y(X) + ε’ 
Meta-model:   Y’’(X) = Y’(X) + ε’’ 

Model  
Output / performance  
              Y=Y(X)       

Physical uncertainty 
Statistical uncertainty 
Measurement uncertainty 

Model uncertainty 

Statistical uncertainty 
Measurement uncertainty 
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The model uncertainty can be quantified using the approach described in [6] and [8]. Basically, it is 
assumed that a number of tests are performed covering the application area of the mode considered, 
and where realizations of the stochastic variables modelling physical uncertainties are measured as 
accurately as possible. Next, the bias and coefficient of variation of the model uncertainty are 
estimated e.g. using a linear regression model similar to the one applied in Figures 1 and 2, see [6] 
and [8] for details. 
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4 Decision making  
As mentioned in section 2.3 ISO 2394:2015 [6] defines three levels of assessment for design / decision 
making related to engineering structures, especially within structural / civil engineering: 

 Risk based  
 Reliability based  
 Semi-probabilistic  

In section 4.1 these three approaches are described in more detail based on [6] but with focus on 
general application. In section 4.2 more details are given on risk-based decision making using a 
Bayesian approach, see also JCSS [12]. 

4.1 Approaches for decision making 

4.1.1 Risk based decisions 

In risk based informed design and/or assessment, decisions should be based on consideration of the 
total risks associated with possible losses and benefits. The time horizon to be considered in the 
assessment of the total risks is generally the total (remaining) design lifetime of the structure. 

In the assessment of the total risks, the net present value of future costs / benefits should be used. The 
interest rate to be used should be chosen carefully, e.g. if the decisions are made for the society, the 
annual discounting rate should be the long-term annual economic growth rate. 

A risk-based approach requires that a consistent modelling of all uncertainties be established as 
described in section 4. 

4.1.2 Reliability based decisions 

As an alternative to risk, based decision making a reliability-based approach can be chosen. Here a 
minimization of the costs / benefits are performed subject to given reliability requirements for the 
structure. The reliability requirements are obtained based on a risk-based approach as described 
above.  

The reliability requirements are assumed associated to adverse events / failure events, and the 
probability that the failure events occur can be estimated by various techniques, incl. simulation based 
techniques and FORM/SORM methods, see [9]. Application of a reliability-based approach is also 
sometimes denoted probabilistic design.  

4.1.3 Semi-probabilistic approaches 

For structures where consequences of deterioration / adverse events / failure are well understood and 
the failure events can be modelled in a standardized manner, a so-called semi-probabilistic approach 
may be used for design and decision-making.  

In the semi-probabilistic approach, uncertain parameters / stochastic variables are represented by 
characteristic values obtained as conservative quantiles in the distribution functions modelling the 
stochastic variables. Typically, for parameters acting as strength variables quantiles less than a 50% 
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quantile is used and for parameters acting as load variables typically a quantile larger than 50% is 
used. Additionally safety factors may be applied. The resulting design parameters are then used as 
deterministic parameters in the model calculations done as basis for the decisions.  

4.2 Risk-based decision making 

Engineers are often in the situation to take decisions on design of a new structure, on 
repair/maintenance of existing structures and on planning tests / inspections / condition monitoring 
where some statistical information is available and where the overall objective is to take cost-optimal 
decisions. In the following, it is shown how Bayesian statistical decision theory can be used for 
making such decisions in a rational way, see Raiffa and Schlaifer [13] and Benjamin and Cornell [14] 
for a detailed description. 

Three levels of decision problems with increasing degree of complexity are: 

 decisions with given information 
 decisions with given new information 
 decisions involving planning of experiments to obtain new information. 

The methods described below are mainly related to continuous stochastic variables and continuous 
decision variables. An important difficulty in Bayesian statistical decision theory when applied in 
civil engineering is that it can be difficult to assign values to cost of failure / not acceptable behaviour, 
especially when consequences for humans are involved.  

Further, organizational factors can have a rather significant influence in the decision process. These 
factors often have an influence, which is not rational from a cost-benefit point of view. Examples are 
the influence of the organizational structure, personal preferences and organizational culture. 

The optimal alternative in a decision problem may depend on: 

 Monetary values of the alternatives 
 Prestige 
 Social acceptance 
 Time factors 
 Possible deaths / human life 
 Value of nature / ecology mechanisms 

The problem is how to compare these attributes. von Neumann & Morgenstern [15] assumes some 
quite simple axioms related to preferences between different alternatives (orderability, transitivity, 
continuity, monotonicity and decomposability). Further, they assume that a utility can be assigned 
each alternative, such that a numerical quantification of the order of preference between alternatives 
is obtained. Since a decision (action) usually is followed by a realization of the uncertain state of 
nature, the utility obtained will be subject to uncertainty. von Neumann & Morgenstern [15] argues 
that the optimal decision is the one, which maximizes the expected utility.  

In the following, it will be assumed that all utilities can be expressed in economic terms. The optimal 
decisions will thus be those that maximize the economic profit. 



637268 - RIBuild - H2020-EE-03-2014                                             Dissemination level: CO  

 

 

Page 16 of 33 

4.2.1 Decisions with given information 

The first problem to consider is that of making rational decisions when some of the parameters 
defining the model are uncertain, but a statistical description of the parameters is available, i.e. the 
statistical information is given. The uncertain parameters are modelled by n  stochastic variables 

),...,,( 21 nXXXX . The density function of the stochastic variables is ),(xXf  where   are statistical 
parameters, for example mean values, standard deviations and correlation coefficients. 

 

Figure 4. Decisions with given information. 

Further, it is assumed that a decision has to be taken between a number of alternatives that can be 
modelled by design/decision variables ),...,z,z(z N21z . The action space is called Z . In Figure 4 a 
decision model with one discretized variable z  is shown. The decision is taken before the realization 
by nature of the stochastic variables is known. Besides the decision variables z  and the uncertain 
variables X  also a cost function )( Xz,C  is introduced in the decision model in Figure 4. Usually in 
classical decision theory a utility function is used instead of the cost function C . When a decision z  
has been taken and a realization x  of the stochastic variables appears then the value obtained is 
denoted x)z,(C  and represents a numerical measure of the consequences of the decision and the 
realization obtained. )( Xz,C  is assumed to be related to money and represents in general costs minus 
benefits, if relevant. 

In some decision problems, it can be difficult to specify the cost function, especially if the 
consequences not directly measurable in money are involved, for example personal preferences. 
However, as described in von Neumann & Morgenstern [15] rational decisions can be taken if the 
cost function is made such that the expected value of the cost function is consistent with the personal 
preferences. Thus, if the decision-maker wants to act rationally the strategy z , which minimizes the 
expected cost, has to be chosen 

   x(xXz,Xz, XXz
dfCCEC ))()(min*      (2) 

 XE  is the expectation with respect to the joint density function of the stochastic variables X . *C  
is the minimum cost corresponding to the optimal decision *z . 

4.2.2 Decisions with given new information 

It is now assumed that some of the parameters defining the model are uncertain and a statistical 
description of the parameters is available and that new information about the uncertain parameters is 
also available. 
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Figure 5. Decisions with given new information. 

In Figure 5, the corresponding decision model is shown. s  models the new information and can e.g. 
be the result of an experiment. s  can be used to update the statistical model of X . 

A predictive density function (updated density function) s)x''
X (f  of the stochastic variables X  taking 

into account a realization s  can be obtained using Bayesian statistical theory, see Lindley [10] and 
Aitchison & Dunsmore [16]. 

Thus, if the decision-maker wants to act rationally, taking into account the new information s  the 
strategy z , which minimizes the expected costs, has to be chosen from   

 )(min* Xz,''
sXz

CEC        (3) 

 ''
sXE  is the expectation with respect to the predictive (updated) density function s)x''

X (f . *C  is the 
minimum cost corresponding to the optimal decision *z . 

4.2.3 Decisions involving planning of experiments to obtain new 
information 

Finally we consider the problem of making rational decisions when the decision-maker has the option 
to make some experiments to obtain new information about the stochastic variables X . The problem 
is, should these experiments be performed and if so, how much information (e.g. how many 
experiments) should be obtained? 

Thus we assume that some of the parameters (modelled by the stochastic variables X ) defining the 
model are uncertain and a statistical description (modelled by  ) of the parameters is available, but 
new information about the uncertain parameters can be obtained. 

 

Figure 6. Decisions with unknown new information. 

The decision model is shown in Figure 6. S  models the possible (but unknown) experiment results. 
S  is thus modelled by stochastic variables. 
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In a time scheme the following steps are performed: 

 Choose an experiment type e . 
 Observe s  as a realization of S . s  is unknown at the time when the experiment plan is chosen. 
 Choose a design *z  by solving a decision / optimization problem, see below. 

The problem to determine the optimal decisions e  and z  are known as preposterior analysis in 
classical decision theory. Two approaches for determining the optimal decisions *e  and *z  are 
possible: 

 the normal form of analysis, and the 
 the extensive form of analysis 

Normal form of analysis 
In the normal form of analysis one or more decision rules d  are defined, see Raiffa & Schlaifer [13]. 
The decision rules d(s) give the design decisions corresponding to each outcome of S , i.e. when the 
experiment result s  is known then the prescribed decision rule gives the design d(s)z  . The 
corresponding cost becomes )( Xd(s),zs,e, C . 

To obtain the optimal decision the decision-maker has to choose the strategies, de,  which minimizes 
the expected cost 

   )(    minmin* Xd(S),zS,e,''
SXeSde

 CEEC     (4) 

where ][eSE  is the expectation with respect to the joint density function for S  in the chosen 

experiment plan e  and ][''
SXE  is the expectation with respect to the updated joint density function of 

X  given S . 

Extensive form of analysis 
In the extensive form of analysis where no decision rules are formulated the optimal strategy ze,  is 
obtained from, see Raiffa & Schlaifer [4].  

   )(  min  min* Xz,S,e,''
SXdeSe

CEEC       (5) 

Note that compared to the normal form of analysis the minimization operation is now inside the 
expectation operation with respect to S .  

Comparison between the normal and the extensive form of analyses 
The extensive formulation (5) of the decision problem is more general than the normal formulation 
since it includes the normal formulation as the special case where it is possible to formulate decision 
rules s)d(e,z  . In the extensive formulation, the optimal decision *z  is obtained by solving the 
optimization problem  )(  min Xz,S,e,''

sSXz
CE


 when the experiment result s  is available. 

As discussed below the numerical computations are significantly larger for solving the extensive form 
than for the normal form. It is therefore of large practical interest to formulate decision problems by 
the normal form of analysis and if this is not possible to be able to obtain approximate solutions. 
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4.2.4 Bayesian networks 

In Bayesian networks, the stochastic variables and the decision variables are discretized. The decision 
problems and optimization problems are the same as described in the previous sections. For an 
introduction to Bayesian networks, see for example Jensen [17]. 
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5 Model uncertainty in relation to HAM transfer models 
A probabilistic description of model uncertainty is presented in section 3.2, and a few examples are 
described in section 2. In this section, modelling and quantification of model uncertainty in relation 
to HAM (Heat Air Moisture) transfer models are considered based on a number of papers and reports 
on HAM transfer modelling provided within the RIBuild project (Hans Janssen). The investigations 
show that only very limited data are available for quantification of model uncertainties, and therefore 
it is not possible at present to establish a probabilistic model for model uncertainties. However, a 
procedure / template is proposed for collection of the necessary data in the future.   

5.1 References  

The available references are divided in three parts: 

1. HAM Storage and transport: 

Belleghem, M. van, M. Steeman, H. Janssen, A. Janssens & M. De Paepe: Validation of a coupled 
heat, vapour and liquid moisture transport model for porous materials implemented in CFD. Building 
and Environment 81 (2014), pp. 340-353. 

Busser, T., J. Berger, A. Piot, M. Pailha & M. Woloszyn. Experimental validation of hygrothermal 
models for building materials and walls: an analysis of recent trends. 2018. hal-01678857. 

Carmeliet, J. & D. Derome: Temperature driven inward vapor diffusion under constant and cyclic 
loading in small-scale wall assemblies: Part 2 heat-moisture transport simulations. Building and 
Environment 47 (2012), pp. 161-169. 

Cunningham, M.J., M.R. Basett, D. McQuade & M. Beckett: A Field Study of the Moisture 
Performance of Roofs of Occupied Newly Constructed Timber Framed Houses. Building and 
Environment, Vol. 29, No. 2, pp. 173-190, 1994. 

Cunningham, M.J.: Modelling of Moisture Transfer in Structures III. A Comparison between the 
Numerical Model SMAHT and Field Data. Building and Environment, Vol. 29, No. 2, pp. 191-196, 
1994. 

Defraeyea, T., B. Blockenc & J. Carmeliet: Influence of uncertainty in heat–moisture transport 
properties on convective drying of porous materials by numerical modelling. Chemical engineering 
research and design 9, (2013), pp. 36–42. 

Djedjig, R., S.-E. Ouldboukhitine, R. Belarbi & E. Bozonnet: Development and validation of a 
coupled heat and mass transfer model for green roofs. International Communications in Heat and 
Mass Transfer 39 (2012) pp. 752–761. 

Dubois, S. A. Evrard & F. Lebeau: Modeling the hygrothermal behaviour of biobased construction 
materials. Journal of Building Physics, 2014, Vol. 38(3), pp. 191–213.  

Gallianoa, R., K.G. Wakilib, T. Stahlc, B. Binderb & B. Daniotti: Performance evaluation of aerogel-
based and perlite-based prototyped insulations for internal thermal retrofitting: HMT model 
validation by monitoring at demo scale. Energy and Buildings, 126 (2016), pp. 275–286. 
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Hussain, M.M. & I. Dincer: Analysis of two-dimensional heat and moisture transfer during drying of 
spherical objects. Int. Journal of Energy Research, 2003, 27, pp. 703–713. 

James, C., C.J. Simonson, P. Talukdar & S. Roels: Numerical and experimental data set for 
benchmarking hygroscopic buffering models. International Journal of Heat and Mass Transfer, 53 
(2010), pp. 3638–3654. 

Janssen, H., G.A. Scheffler & R. Plagge: Experimental study of dynamic effects in moisture transfer 
in building materials. International Journal of Heat and Mass Transfer, 98 (2016), pp. 141–149. 

Künzel, H. & K. Kiesel: Calculation of heat and moisture transfer in exposed building components. 
Int. J. Heat Mass transfer. Vol. 40, 1997, pp. 159-167. 

Langmans, J., A. Nicolai, R. Klein & S. Roels: A quasi-steady state implementation of air convection 
in a transient heat and moisture building component model. Building and Environment 58 (2012), pp. 
208-218. 

Lü, X.: Modelling of heat and moisture transfer in buildings 1. Model program. Energy and Buildings, 
34, 2002, pp. 1033-1043. 

O’Learya, T.P., G. Menziesb & A. Duffyc: The Design of a Modelling, Monitoring and Validation 
Method for a Solid Wall Structure. Energy Procedia, 78 (2015), pp. 243 – 248. 

Radon, J., K. Was, A. Flaga-Maryanczyk & J. Schnotale: Experimental and theoretical study on 
hygrothermal long-term performance of outer assemblies in lightweight passive house. Journal of 
Building Physics, 2018, Vol. 41(4), pp. 299–320. 

Roels, S., W. Depraetere, J. Carmeliet & H. Hens: Simulating Non-Isothermal Water Vapour 
Transfer: An Experimental Validation on Multi-Layered Building Components. J. Thernal Env. & 
Bldg. Sci. Vol. 23, 1999, pp. 17-40. 

Steeman, M., M.Van Belleghem, M. DePaepe & A. Janssens: Experimental validation and sensitivity 
analysis of a coupled BESeHAM model. Building and Environment, 45 (2010), pp. 2202-2217. 

Tariku, F., K. Kumaran & P. Fazio: Transient model for coupled heat, air and moisture transfer 
through multilayered porous media. International Journal of Heat and Mass Transfer, 53 (2010), pp. 
3035–3044. 
 
2. HAM Boundary conditions 

Abuku, M., H. Janssen, J. Poesen & S. Roels: Impact, absorption and evaporation of raindrops on 
building facades. Building and Environment, 44 (2009), pp. 113–124. 

Abuku, M., B. Blocken & S. Roels: Moisture response of building facades to wind-driven rain: Field 
measurements compared with numerical simulations.  J. Wind Eng. Ind. Aerodyn. 97 (2009). pp. 
197–207. 

Blockena,_B. & J. Carmeliet: Validation of CFD simulations of wind-driven rain on a low-rise 
building façade. Building and Environment, 42 (2007), pp. 2530–2548. 
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Charisi, S., T.K. Thiis, P. Stefansson & I. Burud: Prediction model of microclimatic surface 
conditions on building façades. Building and Environment, 128 (2018), pp. 46–54. 

Defraeye, T., B. Blocken & J. Carmeliet: Convective heat transfer coefficients for exterior building 
surfaces: Existing correlations and CFD modelling. Energy Conversion and Management, 52 (2011), 
pp. 512–522. 

Janssen, H.,_B. Blocken, S. Roels & J. Carmeliet: Wind-driven rain as a boundary condition for HAM 
simulations: Analysis of simplified modelling approaches. Building and Environment, 42 (2007), pp. 
1555–1567. 

Kubilay, A., D. Derome, B. Blocken & J. Carmeliet: CFD simulation and validation of wind-driven 
rain on a building facade with an Eulerian multiphase model. Building and Environment, 61 (2013), 
pp. 69-81. 

Kubilay, A., D. Derome, B. Blocken & J. Carmeliet: Numerical simulations of wind-driven rain on 
an array of low-rise cubic buildings and validation by field measurements. Building and Environment, 
81 (2014), pp. 283-295. 

Mirsadeghi, M., D. Cóstola, B. Blocken & J.L.M. Hensen: Review of external convective heat 
transfer coefficient models in building energy simulation programs: Implementation and uncertainty. 
Applied Thermal Engineering, 56 (2013), pp. 134-151. 

Sharples, S.: Full-scale Measurements of Convective Energy Losses from Exterior Building Surfaces. 
Building and Environment, Vol. 19, No. I, pp. 31-39. 1984. 
 
3. HAM Performance criteria 

Brischke, C. & S. Thelandersson: Modelling the outdoor performance of wood products – A review 
on existing approaches. Construction and Building Materials, 66 (2014), pp. 384–397. 

Lisøa, K.R., T. Kvande, H.O. Hygen, J.V. Thue & K. Harstveit: A frost decay exposure index for 
porous, mineral building materials. Building and Environment, 42 (2007), pp. 3547–3555. 

Luciano, R. & E. Sacco: A damage model for masonry structures. Eur. J. Mech., A/Solids, Vol. 17, 
no 2, pp. 285-303, 1998. 

Mallidi, S.R.: Application of mercury intrusion porosimetry on clay bricks to assess freeze-thaw 
durability -a bibliography with abstracts. Construction and Building Materials, Vol. 10. No. 6, pp. 
461-465, 1996. 

Kumaran, M.N.-K.: Biological damage function models for durability assessments of wood and 
wood-based products in building envelopes. Eur. J. Wood Prod., (2011) 69, pp. 619–631. 

Sedlbauer, K.: Prediction of Mould Growth by Hygrothermal Calculation. Journal of Thernal Env. & 
Bldg. Sci., Vol. 25, No. 4, 2002. 

Uranjek, M. & V. Bokan-Bosiljkov: Influence of freeze–thaw cycles on mechanical properties of 
historical brick masonry. Construction and Building Materials, 84 (2015), pp. 416–428. 
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Vereecken, E. & S. Roels: Review of mould prediction models and their influence on mould risk 
evaluation. Building and Environment, 51 (2012), pp. 296-310. 

Vereecken, E. K. Vanoirbeek & S. Roels: Towards a more thoughtful use of mould prediction models: 
A critical view on experimental mould growth research. Journal of Building Physics, 2015, Vol. 
39(2), pp. 102–123. 

Aarlea, M. van, H. Schellena & J. van Schijndela: Hygro Thermal Simulation to Predict the Risk of 
Frost Damage in Masonry; Effects of Climate Change. Energy Procedia, 78 (2015), pp. 2536 - 2541. 
 
 
As described in section 3.2 quantification of model uncertainty by a bias and a coefficient of variation 
requires  

 simultaneous estimates of a model Ymodel = Y(X) and  
 experimental results Yexp with   
 measured input (X) to the model.  

The procedure in EN1990 Annex D [8] or ISO2394 [6] can be used for the quantification, see also 
Annex A, assuming that the model uncertainty is defined by a bias b and a Lognormal distributed 
stochastic variable ε (with mean value = 1 and standard deviation σε) multiplied to the theoretical 
model, i.e. 
 
 Y =b ε Y(X) 
 
where X models physical uncertainties, and parameter/statistical uncertainties, if relevant. 
 
The review of the above many references shows that only few papers fulfil the above three 
‘requirements’ in order to quantify the model uncertainty. Examples are shown in the following. 
 

5.2 Example 1 

This example is from ‘2. HAM Boundary conditions’: Abuku, M., B. Blocken & S. Roels: Moisture 
response of building facades to wind-driven rain: Field measurements compared with numerical 
simulations.  J. Wind Eng. Ind. Aerodyn. 97 (2009). pp. 197–207.  
 
Absorption of rain at a wall surface is estimated by a numerical model and compared with 
measurements as illustrated in the figure 7 from (from Abuku et al.). 
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Figure 7. Illustration of calculation process (from Abuku et al.). 

  
The change in weight Δm of a test specimen is estimated by a numerical model where the input 
parameter is the wind-driven rain intensity, IWDR, i.e.    
 
 Y(X) = b ε Y(IWDR) = b ε Δmsim (IWDR) 
 
In figure 8 a scatter diagram is shown with computed model results together with measurements (from 
Abuku et al.). This example indicates that the model uncertainty can approximately be represented 
with a bias b ≈ 0.5 and a standard deviation of the model uncertainty σε ≈ 0.2. 
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Figure 8. Results from computational model and measurements (from Abuku et al.). The dashed line illustrates the best fit 

through the data points and the corresponding bias is approximately b ≈ 0.5. 

5.3 Example 2 

This example is from ‘2. HAM Boundary conditions’: Defraeye, T., B. Blocken & J. Carmeliet: 
Convective heat transfer coefficients for exterior building surfaces: Existing correlations and CFD 
modelling. Energy Conversion and Management, 52 (2011), pp. 512–522. 
 
The exterior convective heat transfer coefficient (CHTC) obtained by measurements as a function of 
the wind speed is compared with estimates based on a CFD model.  
 
Table 1 (from Defraeye et al.) indicates differences between the measurements and the model (CFD) 
predictions. These results cannot directly be transferred to model uncertainties, but could be re-
analyzed following the procedure in section 3.2 to provide quantification of the model uncertainty. 
 

Table 1.  Comparison between measurements and CDF model predictions (from Defraeye et al.). 
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5.4 Example 3 

This example is from ‘3. HAM Performance criteria’: Brischke, C. & S. Thelandersson: Modelling 
the outdoor performance of wood products – A review on existing approaches. Construction and 
Building Materials, 66 (2014), pp. 384–397. 
 
Models for wood decay rate are considered. An empirical model is developed as a function of the 
‘dose’ which is expressed as a function of daily wood moisture content and the wood temperature. 
 
Figure 9 shows a comparison between measured data and the mode. These data cannot directly be 
transferred to model uncertainties, but could be re-analyzed following the procedure in section 3.2 to 
provide quantification of the model uncertainty. 

 

 
Figure 9. Comparison between model and data (from Brischke & Thelandersson). 

5.5 Example 4 

This example is from ‘1. HAM Storage and transport’: Carmeliet, J. & D. Derome: Temperature 
driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 
2 heat-moisture transport simulations. Building and Environment 47 (2012), pp. 161-169. 
 
A comparison between model predictions and measurements of the moisture content in brick veneer 
is shown in Figure 10 (from Carmeliet & Derome). 
 
This example indicates that the model uncertainty can approximately be represented with a bias b ≈ 
1.0 and a standard deviation of the model uncertainty σε ≈ 0.15. 
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Figure 10. Comparison of measured vs. calculated moisture content. Scatter diagram (from Carmeliet & Derome). 

5.6 Example 5 

This example is from ‘1. HAM Storage and transport’: Dubois, S. A. Evrard & F. Lebeau: Modeling 
the hygrothermal behaviour of biobased construction materials. Journal of Building Physics, 2014, 
Vol. 38(3), pp. 191–213.  
 
Comparisons between surface temperatures obtained by numerical models (COMSOL and WUFI 
Pro) and measurements are shown in the scatter diagrams in Figure 11 (from Dubois et al.). The 
information used in the scatter diagrams could be re-analyzed to quantify the model uncertainty. 
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Figure 11. Comparison of measured and calculated surface temperatures Scatter diagrams (from Dubois et al.). 

 

5.7 Concluding remarks on modelling and quantification of model 
uncertainties 

As described in section 3.2 two ‘types’ of model uncertainties should be considered and included in 
the probabilistic models: 

 Model uncertainties where a meta-model is formulated as a simplification to a more exact 
numerical model. Figure 1 and 2 in section 2 show examples of scatter diagrams comparing 
meta-models with simulation / numerical models. The model uncertainty can be quantified 
by the approach in section 3.2 and the more detailed descriptions in e.g. EN1990 Annex D 
[8] or ISO2394 [6]. 

It is noted that the model uncertainty related to the numerical model should also be quantified, 
see below.  

 Model uncertainties where a numerical / theoretical model is formulated and compared to 
measurements / experimental data / laboratory tests. The above sections 5.2-5.6 show 
examples of scatter diagrams comparing models with experimental data. The model 
uncertainty can be quantified by the approach in section 3.2 and the more detailed 
descriptions in e.g. EN1990 Annex D [8] or ISO2394 [6]. 

Although many references have been investigated only few of these contain the information needed  
to quantify the model uncertainty in order to provide more general recommendations for including 
model uncertainties in the probabilistic analyses. Therefore, it is not possible at present to establish a 
probabilistic model for model uncertainties within the scope of the RIBuild project. 

However, the procedure described in section 3.2 can be used for collection of the necessary data in 
the future for quantification of model uncertainties, see also Annex A.    
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Annex A: Procedure for model uncertainty quantification 
This annex described a procedure for quantification of model uncertainty following the method 
described in EN1990 Annex D [8]. 
 
It is assumed that a (theoretical) calculation model is established: 

 1,...,t nY Y X X        
 
where 
 

1,..., nX X  are n parameters / variables 
 
It is assumed that N tests are performed. For each test 

 The parameters 1
ˆ ˆ,..., nX X  are measured (as precise as possible) 

 The experimental result is measured, eY  

 The theoretical result is calculated  1
ˆ ˆ,...,t nY Y X X  

 
Further, it is assumed that 

a) A sufficient number of tests is performed 
b) All relevant parameters are measured at each experiment 
c) There is no correlation (statistical dependency) between the variables in the calculation models 
d) The experiments are statistical independent 
e) All variables are Lognormal distributed 
f) The model uncertainty is modelled as a Lognormal distributed stochastic variable multiplied 

to the calculation model 
 
The calculations follows the following steps: 
 
Step 1: Formulation of calculation model  
The calculation model is written as shown above: 

 1,...,t nY Y X X       
 
Step 2: Compare measured and theoretical values 
The measured parameters are for each test i inserted in the calculation model and the theoretical values 

are obtained, ,t iY . These are compared to the experimental values ,e iY . The values ( ,t iY , ,e iY ) are plotted 
in a scatter diagram, see example in figure A.1. 
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Figure A.1. tY  - eY  scatter diagram. 

 
If the calculation model is perfect and complete hen the points will all be on a straight line with slope b 
= 1 (dashed line in figure A.1). In practice, the points will be scattered around the best straight line 
through the points. The bias b and the coefficient of variation V , representing the spread / uncertainty 
of the points are determined in steps 3 and 4.  
 
Step 3: Estimate the mean value of the correction factor – bias b 
The probabilistic model is written: 

  tY b Y          
 
where δ is a stochastic variable assumed Lognormal distributed with mean value equal to 1 and 
coefficient of variation  V . Bias b is determined as the least squares fit of the slope: 

, ,
2
,

e i t i

t i

R R
b

R




      

  
The mean value of the theoretical model is determined using the mean values of the parameters 
 1,...,m mnX X  

 1 ,...,m m mnY b Y X X       
 
Step 4: Estimate the coefficient of variation of the error 
The error i  from each tests is determined from: 

,
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e i
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The mean value and variance are determined: 

1
iN

            

 
22 1

1 is
N   

       

 
The coefficient of variation of the model uncertainty is calculated by  

 2exp 1V s          

 
 
Step 5: Compatibility analysis 
The compatibility of the test population with the calculation model should be analyzed. If the 
uncertainty / ’scatter’ of the ( ,t iY , ,e iY ) values are too large to result in reasonable / economic designs 
the standard deviation / ’scatter’ can be reduced as follows: 
 
a) Update the calculation model by introducing parameters in the calculation model which were 

initially disregarded 
b) Update b and V  by dividing the total test population in smaller, appropriate sub-populations where 

the influence of the additional parameters (in point a)) can be considered constant. 
 
It is noted that when the test population is sub-divided in smaller populations then the statistical 
uncertainty is increased compared to the original test population. 
 
Statistical uncertainty 
Statistical uncertainty can approximately be included by increasing the coefficient of variation V  by 
the factor 

1 1 1/
3

Nf N
N


 


       

 
where N is the number of data / tests. 
 
Total coefficient of variation 

The (physical) uncertainty related to the variables  1,...,m mnX X  can be added such that the total 
coefficient of variation of the calculation model is obtained. 
 
It is assumed that the calculation model is linearized around the mean values:  

   
 

 1,...,
m

n m i mi
i

dY
Y X X Y X X

dX


  
X X

X
X     
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The coefficient of variation of the calculation model due to the parameter uncertainties  1,...,m mnX X  
is determined by 
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where 

iX  is the standard deviation of iX . 
 
The total coefficient of variation including physical, model and statistical uncertainties is approximately 
estimated by  
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